Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cardiovascular effects of electronic cigarettes

Key Points

  • The population risk versus benefit for use of electronic cigarettes (ECs) is strongly influenced by the relative safety of ECs compared with conventional cigarettes

  • The exposure of EC users to potentially toxic chemical emissions is difficult to quantify, given the numerous types of EC devices, different e-liquids, and disparities in individual use patterns

  • EC emissions of concern for cardiovascular health include nicotine, oxidizing chemicals, aldehydes (especially acrolein), and particulates

  • Nicotine might contribute to acute cardiovascular events, particularly in people with underlying cardiovascular disease, primarily by sympathetic neural stimulation and systemic release of catecholamines

  • The cardiovascular risk of EC use is likely to be much less than that of cigarette smoking

Abstract

Cardiovascular safety is an important consideration in the debate on the benefits versus the risks of electronic cigarette (EC) use. EC emissions that might have adverse effects on cardiovascular health include nicotine, oxidants, aldehydes, particulates, and flavourants. To date, most of the cardiovascular effects of ECs demonstrated in humans are consistent with the known effects of nicotine. Pharmacological and toxicological studies support the biological plausibility that nicotine contributes to acute cardiovascular events and accelerated atherogenesis. However, epidemiological studies assessing Swedish smokeless tobacco, which exposes users to nicotine without combustion products, generally have not found an increased risk of myocardial infarction or stroke among users, but suggest that nicotine might contribute to acute cardiovascular events, especially in those with underlying coronary heart disease. The effects of aldehydes, particulates, and flavourants derived from ECs on cardiovascular health have not been determined. Although ECs might pose some cardiovascular risk to users, particularly those with existing cardiovascular disease, the risk is thought to be less than that of cigarette smoking based on qualitative and quantitative comparisons of EC aerosol versus cigarette smoke constituents. The adoption of ECs rather than cigarette smoking might, therefore, result in an overall benefit for public health.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tobacco combustion products present in a conventional cigarette.
Figure 2: Components of an electronic cigarette (EC).
Figure 3: Overview of mechanisms by which electronic cigarette use might cause acute cardiovascular events.

References

  1. 1

    Farsalinos, K. E., Poulas, K., Voudris, V. & Le Houezec, J. Electronic cigarette use in the European Union: analysis of a representative sample of 27 460 Europeans from 28 countries. Addiction 111, 2032–2040 (2016).

    Article  PubMed  Google Scholar 

  2. 2

    Syamlal, G., Jamal, A., King, B. & Mazurek, J. Electronic cigarette use among working adults — United States, 2014. MMWR Morb. Mortal. Wkly Rep. 65, 557–561 (2016).

    Article  PubMed  Google Scholar 

  3. 3

    Britton, J., Arnott, D., McNeill, A. & Hopkinson, N. Nicotine without smoke-putting electronic cigarettes in context. BMJ 353, i1745 (2016).

    Article  PubMed  Google Scholar 

  4. 4

    Kalkhoran, S. & Glantz, S. A. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir. Med. 4, 116–128 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    U.S. Department of Health and Human Services. How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the Surgeon General. NCBI http://www.ncbi.nlm.nih.gov/books/NBK53017/pdf/Bookshelf_NBK53017.pdf (2010).

  6. 6

    Zeller, M. & Hatsukami, D. The strategic dialogue on tobacco harm reduction: a vision and blueprint for action in the US. Tob. Control 18, 324–332 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    McRobbie, H., Bullen, C., Hartmann-Boyce, J. & Hajek, P. Electronic cigarettes for smoking cessation and reduction. Cochrane Database Syst. Rev. 12, CD010216 (2014).

    Google Scholar 

  8. 8

    Goniewicz, M. L. et al. Exposure to nicotine and selected toxicants in cigarette smokers who switched to electronic cigarettes: a longitudinal within-subjects observational study. Nicotine Tob Res. 19, 160–167 (2017).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Kalkhoran, S. & Glantz, S. A. Modeling the health effects of expanding e-cigarette sales in the United States and United Kingdom: a Monte Carlo analysis. JAMA Intern. Med. 175, 1671–1680 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Leventhal, A. M. et al. Association of electronic cigarette use with initiation of combustible tobacco product smoking in early adolescence. JAMA 314, 700–707 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  11. 11

    Levy, D. T. et al. The application of a decision-theoretic model to estimate the public health impact of vaporized nicotine product initiation in the United States. Nicotine Tob. Res. 19, 149–159 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Brown, C. J. & Cheng, J. M. Electronic cigarettes: product characterisation and design considerations. Tob. Control 23 (Suppl. 2), ii4–ii10 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Farsalinos, K. E., Romagna, G., Tsiapras, D., Kyrzopoulos, S. & Voudris, V. Evaluation of electronic cigarette use (vaping) topography and estimation of liquid consumption: implications for research protocol standards definition and for public health authorities' regulation. Int. J. Environ. Res. Public Health 10, 2500–2514 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Robinson, R. J., Hensel, E. C., Morabito, P. N. & Roundtree, K. A. Electronic cigarette topography in the natural environment. PLoS ONE 10, e0129296 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  15. 15

    Wagener, T. L. et al. Have combustible cigarettes met their match? The nicotine delivery profiles and harmful constituent exposures of second-generation and third-generation electronic cigarette users. Tob. Control http://dx.doi.org/10.1136/tobaccocontrol-2016-053041 (2016).

  16. 16

    Lisko, J. G., Tran, H., Stanfill, S. B., Blount, B. C. & Watson, C. H. Chemical composition and evaluation of nicotine, tobacco alkaloids, pH, and selected flavors in E-cigarette cartridges and refill solutions. Nicotine Tob. Res. 17, 1270–1278 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Goniewicz, M. L. et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 23, 133–139 (2014).

    Article  PubMed  Google Scholar 

  18. 18

    Williams, M., Villarreal, A., Bozhilov, K., Lin, S. & Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 8, e57987 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  19. 19

    Sleiman, M. et al. Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ. Sci. Technol. 50, 9644–9651 (2016).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Jensen, R. P., Luo, W., Pankow, J. F., Strongin, R. M. & Peyton, D. H. Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 372, 392–394 (2015).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Uchiyama, S., Ohta, K., Inaba, Y. & Kunugita, N. Determination of carbonyl compounds generated from the E-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Anal. Sci. 29, 1219–1222 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Kosmider, L. et al. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 16, 1319–1326 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  23. 23

    Farsalinos, K. E., Voudris, V. & Poulas, K. E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions. Addiction 110, 1352–1356 (2015).

    Article  PubMed  Google Scholar 

  24. 24

    McRobbie, H. et al. Effects of switching to electronic cigarettes with and without concurrent smoking on exposure to nicotine, carbon monoxide, and acrolein. Cancer Prev. Res. (Phila.) 8, 873–878 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Hecht, S. S. et al. Evaluation of toxicant and carcinogen metabolites in the urine of e-cigarette users versus cigarette smokers. Nicotine Tob. Res. 17, 704–709 (2015).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Shahab, L. et al. Nicotine, carcinogen, and toxin exposure in long-term E-cigarette and nicotine replacement therapy users: a cross-sectional study. Ann. Intern. Med. http://dx.doi.org/10.7326/M16-1107 (2017).

  27. 27

    Goel, R. et al. Highly reactive free radicals in electronic cigarette aerosols. Chem. Res. Toxicol. 28, 1675–1677 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  28. 28

    Gold, D. R. & Mittleman, M. A. New insights into pollution and the cardiovascular system: 2010 to 2012. Circulation 127, 1903–1913 (2013).

    Article  PubMed  Google Scholar 

  29. 29

    Mikheev, V. B., Brinkman, M. C., Granville, C. A., Gordon, S. M. & Clark, P. I. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 18, 1895–1902 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  30. 30

    Bertholon, J. F. et al. Comparison of the aerosol produced by electronic cigarettes with conventional cigarettes and the shisha. Rev. Mal. Respir. 30, 752–757 (in French) (2013).

    Article  PubMed  Google Scholar 

  31. 31

    Barrington-Trimis, J. L., Samet, J. M. & McConnell, R. Flavorings in electronic cigarettes: an unrecognized respiratory health hazard? JAMA 312, 2493–2494 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  32. 32

    Behar, R. Z. et al. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol. In Vitro 28, 198–208 (2014).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Farsalinos, K. E. et al. Nicotine absorption from electronic cigarette use: comparison between first and new-generation devices. Sci. Rep. 4, 4133 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34

    Hajek, P., Przulj, D., Phillips, A., Anderson, R. & McRobbie, H. Nicotine delivery to users from cigarettes and from different types of e-cigarettes. Psychopharmacology (Berl.) 234, 773–779 (2017).

    CAS  Article  Google Scholar 

  35. 35

    Benowitz, N. L. & Burbank, A. D. Cardiovascular toxicity of nicotine: implications for electronic cigarette use. Trends Cardiovasc. Med. 26, 515–523 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  36. 36

    Benowitz, N. L. Nicotine addiction. N. Engl. J. Med. 362, 2295–2303 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  37. 37

    Filippini, P., Cesario, A., Fini, M., Locatelli, F. & Rutella, S. The Yin and Yang of non-neuronal alpha7-nicotinic receptors in inflammation and autoimmunity. Curr. Drug Targets 13, 644–655 (2012).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Lee, J. & Cooke, J. P. Nicotine and pathological angiogenesis. Life Sci. 91, 1058–1064 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  39. 39

    Konishi, H., Wu, J. & Cooke, J. P. Chronic exposure to nicotine impairs cholinergic angiogenesis. Vasc. Med. 15, 47–54 (2010).

    Article  PubMed  Google Scholar 

  40. 40

    Benowitz, N. L. & Gourlay, S. G. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J. Am. Coll. Cardiol. 29, 1422–1431 (1997).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Berridge, M. S. et al. Smoking produces rapid rise of [11C]nicotine in human brain. Psychopharmacology (Berl.) 209, 383–394 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Benowitz, N. L. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin. Pharmacol. Ther. 83, 531–541 (2008).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Hukkanen, J., Jacob, P. III & Benowitz, N. L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 57, 79–115 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Vansickel, A. R., Cobb, C. O., Weaver, M. F. & Eissenberg, T. E. A clinical laboratory model for evaluating the acute effects of electronic “cigarettes”: nicotine delivery profile and cardiovascular and subjective effects. Cancer Epidemiol. Biomarkers Prev. 19, 1945–1953 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    St Helen, G. et al. Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes. Addiction 111, 535–544 (2016).

    Article  PubMed  Google Scholar 

  46. 46

    Nicotine replacement therapy for patients with coronary artery disease. Working Group for the Study of Transdermal Nicotine in Patients with Coronary artery disease. Arch. Intern. Med. 154, 989–995 (1994).

  47. 47

    Joseph, A. M. et al. The safety of transdermal nicotine as an aid to smoking cessation in patients with cardiac disease. N. Engl. J. Med. 335, 1792–1798 (1996).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Tzivoni, D. et al. Cardiovascular safety of transdermal nicotine patches in patients with coronary artery disease who try to quit smoking. Cardiovasc. Drugs Ther. 12, 239–244 (1998).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Meine, T. J., Patel, M. R., Washam, J. B., Pappas, P. A. & Jollis, J. G. Safety and effectiveness of transdermal nicotine patch in smokers admitted with acute coronary syndromes. Am. J. Cardiol. 95, 976–978 (2005).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Mills, E. J., Thorlund, K., Eapen, S., Wu, P. & Prochaska, J. J. Cardiovascular events associated with smoking cessation pharmacotherapies: a network meta-analysis. Circulation 129, 28–41 (2014).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Wennmalm, A. et al. Relation between tobacco use and urinary excretion of thromboxane A2 and prostacyclin metabolites in young men. Circulation 83, 1698–1704 (1991).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Piano, M. R. et al. Impact of smokeless tobacco products on cardiovascular disease: implications for policy, prevention, and treatment: a policy statement from the American Heart Association. Circulation 122, 1520–1544 (2010).

    Article  PubMed  Google Scholar 

  53. 53

    Hansson, J. et al. Use of snus and acute myocardial infarction: pooled analysis of eight prospective observational studies. Eur. J. Epidemiol. 27, 771–779 (2012).

    Article  PubMed  Google Scholar 

  54. 54

    Yatsuya, H. & Folsom, A. R. Risk of incident cardiovascular disease among users of smokeless tobacco in the Atherosclerosis Risk in Communities (ARIC) study. Am. J. Epidemiol. 172, 600–605 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Arefalk, G. et al. Discontinuation of smokeless tobacco and mortality risk after myocardial infarction. Circulation 130, 325–332 (2014).

    Article  PubMed  Google Scholar 

  56. 56

    Wallenfeldt, K., Hulthe, J., Bokemark, L., Wikstrand, J. & Fagerberg, B. Carotid and femoral atherosclerosis, cardiovascular risk factors and C-reactive protein in relation to smokeless tobacco use or smoking in 58-year-old men. J. Intern. Med. 250, 492–501 (2001).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Arefalk, G. et al. Smokeless tobacco (snus) and risk of heart failure: results from two Swedish cohorts. Eur. J. Prev. Cardiol. 19, 1120–1127 (2012).

    Article  PubMed  Google Scholar 

  58. 58

    Hergens, M. P. et al. Use of Scandinavian moist smokeless tobacco (snus) and the risk of atrial fibrillation. Epidemiology 25, 872–876 (2014).

    Article  PubMed  Google Scholar 

  59. 59

    Vidyasagaran, A. L., Siddiqi, K. & Kanaan, M. Use of smokeless tobacco and risk of cardiovascular disease: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 23, 1970–1981 (2016).

    Article  PubMed  Google Scholar 

  60. 60

    Morris, P. B. et al. Cardiovascular effects of exposure to cigarette smoke and electronic cigarettes: clinical perspectives from the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J. Am. Coll. Cardiol. 66, 1378–1391 (2015).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Carter, B. D., Freedman, N. D. & Jacobs, E. J. Smoking and mortality — beyond established causes. N. Engl. J. Med. 372, 631–640 (2015).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Nadruz, W. Jr et al. Smoking and cardiac structure and function in the elderly: the ARIC study (Atherosclerosis Risk in Communities). Circ Cardiovasc. Imaging 9, e004950 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Burns, D. M. Epidemiology of smoking-induced cardiovascular disease. Prog. Cardiovasc. Dis. 46, 11–29 (2003).

    Article  PubMed  Google Scholar 

  64. 64

    Zhu, W., Yuan, P., Shen, Y., Wan, R. & Hong, K. Association of smoking with the risk of incident atrial fibrillation: a meta-analysis of prospective studies. Int. J. Cardiol. 218, 259–266 (2016).

    Article  PubMed  Google Scholar 

  65. 65

    Desai, H. et al. Risk factors for appropriate cardioverter-defibrillator shocks, inappropriate cardioverter-defibrillator shocks, and time to mortality in 549 patients with heart failure. Am. J. Cardiol. 105, 1336–1338 (2010).

    Article  PubMed  Google Scholar 

  66. 66

    Goldenberg, I. et al. Cigarette smoking and the risk of supraventricular and ventricular tachyarrhythmias in high-risk cardiac patients with implantable cardioverter defibrillators. J. Cardiovasc. Electrophysiol. 17, 931–936 (2006).

    Article  PubMed  Google Scholar 

  67. 67

    Metz, L. & Waters, D. D. Implications of cigarette smoking for the management of patients with acute coronary syndromes. Prog. Cardiovasc. Dis. 46, 1–9 (2003).

    Article  PubMed  Google Scholar 

  68. 68

    Pope, C. A. III et al. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120, 941–948 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Messner, B. & Bernhard, D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 34, 509–515 (2014).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Csordas, A. & Bernhard, D. The biology behind the atherothrombotic effects of cigarette smoke. Nat. Rev. Cardiol. 10, 219–230 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Barua, R. S. & Ambrose, J. A. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler. Thromb. Vasc. Biol. 33, 1460–1467 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Bartalis, J., Chan, W. G. & Wooten, J. B. A new look at radicals in cigarette smoke. Anal. Chem. 79, 5103–5106 (2007).

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Benowitz, N. L. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog. Cardiovasc. Dis. 46, 91–111 (2003).

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Bhatnagar, A. E-cigarettes and cardiovascular disease risk: evaluation of evidence, policy implications, and recommendations. Curr. Cardiovasc. Risk Rep. 10, 24 (2016).

    Article  Google Scholar 

  75. 75

    Haussmann, H. J. Use of hazard indices for a theoretical evaluation of cigarette smoke composition. Chem. Res. Toxicol. 25, 794–810 (2012).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Penn, A. & Snyder, C. Arteriosclerotic plaque development is 'promoted' by polynuclear aromatic hydrocarbons. Carcinogenesis 9, 2185–2189 (1988).

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Tsuji, H. et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 94, 2850–2855 (1996).

    CAS  Article  Google Scholar 

  79. 79

    Sjoberg, N. & Saint, D. A. A single 4 mg dose of nicotine decreases heart rate variability in healthy nonsmokers: implications for smoking cessation programs. Nicotine Tob. Res. 13, 369–372 (2011).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Riley, H. E. et al. Hormonal contraception among electronic cigarette users and cardiovascular risk: a systematic review. Contraception 93, 190–208 (2016).

    Article  PubMed  Google Scholar 

  81. 81

    Farsalinos, K. E., Tsiapras, D., Kyrzopoulos, S., Savvopoulou, M. & Voudris, V. Acute effects of using an electronic nicotine-delivery device (electronic cigarette) on myocardial function: comparison with the effects of regular cigarettes. BMC Cardiovasc. Disord. 14, 78 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82

    Yan, X. S. & D'Ruiz, C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul. Toxicol. Pharmacol. 71, 24–34 (2015).

    CAS  Article  PubMed  Google Scholar 

  83. 83

    Czogala, J., Cholewinski, M., Kutek, A. & Zielinska-Danch, W. Evaluation of changes in hemodynamic parameters after the use of electronic nicotine delivery systems among regular cigarette smokers. Prz. Lek. 69, 841–845 (in Polish) (2012).

    PubMed  Google Scholar 

  84. 84

    Caponnetto, P. et al. Efficiency and safety of an electronic cigareTte (ECLAT) as tobacco cigarettes substitute: a prospective 12-month randomized control design study. PLoS ONE 8, e66317 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  85. 85

    Oncken, C. A., Litt, M. D., McLaughlin, L. D. & Burki, N. A. Nicotine concentrations with electronic cigarette use: effects of sex and flavor. Nicotine Tob. Res. 17, 473–478 (2015).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Farsalinos, K. et al. Effect of continuous smoking reduction and abstinence on blood pressure and heart rate in smokers switching to electronic cigarettes. Intern. Emerg. Med. 11, 85–94 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Vlachopoulos, C. et al. Electronic cigarette smoking increases aortic stiffness and blood pressure in young smokers. J. Am. Coll. Cardiol. 67, 2802–2803 (2016).

    Article  PubMed  Google Scholar 

  88. 88

    Szoltysek-Boldys, I. et al. Influence of inhaled nicotine source on arterial stiffness. Prz. Lek. 71, 572–575 (2014).

    PubMed  Google Scholar 

  89. 89

    Teasdale, J. E., Newby, A. C., Timpson, N. J., Munafo, M. R. & White, S. J. Cigarette smoke but not electronic cigarette aerosol activates a stress response in human coronary artery endothelial cells in culture. Drug Alcohol Depend. 163, 256–260 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  90. 90

    Putzhammer, R. et al. Vapours of US and EU market leader electronic cigarette brands and liquids are cytotoxic for human vascular endothelial cells. PLoS ONE 11, e0157337 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91

    Carnevale, R. et al. Acute impact of tobacco versus electronic cigarette smoking on oxidative stress and vascular function. Chest 150, 606–612 (2016).

    Article  PubMed  Google Scholar 

  92. 92

    Antoniewicz, L. et al. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. Atherosclerosis 255, 179–185 (2016).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Heeschen, C., Chang, E., Aicher, A. & Cooke, J. P. Endothelial progenitor cells participate in nicotine-mediated angiogenesis. J. Am. Coll. Cardiol. 48, 2553–2560 (2006).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Heiss, C. Electronic cigarettes increase EPCs. Atherosclerosis 255, 119–121 (2016).

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Moheimani, R. S. et al. Increased cardiac sympathetic activity and oxidative stress in habitual electronic cigarette users: implications for cardiovascular risk. JAMA Cardiol. http://dx.doi.org/10.1001/jamacardio.2016.5303 (2017).

  96. 96

    Flouris, A. D. et al. Acute effects of electronic and tobacco cigarette smoking on complete blood count. Food Chem. Toxicol. 50, 3600–3603 (2012).

    CAS  Article  PubMed  Google Scholar 

  97. 97

    Rowell, T. R. & Tarran, R. Will chronic e-cigarette use cause lung disease? Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L1398–L1409 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  98. 98

    Lerner, C. A. et al. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS ONE 10, e0116732 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99

    Martin, E. M. et al. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L135–L144 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Manzoli, L. et al. Cohort study of electronic cigarette use: effectiveness and safety at 24 months. Tob. Control http://dx.doi.org/10.1136/tobaccocontrol-2015-052822 (2016).

  101. 101

    Farsalinos, K. E., Romagna, G., Tsiapras, D., Kyrzopoulos, S. & Voudris, V. Characteristics, perceived side effects and benefits of electronic cigarette use: a worldwide survey of more than 19,000 consumers. Int. J. Environ. Res. Public Health 11, 4356–4373 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102

    Monroy, A. E., Hommel, E., Smith, S. T. & Raji, M. Paroxysmal atrial fibrillation following electronic cigarette use in an elderly woman. Clinical Geriatrics 20, 28–32 (2012).

    Google Scholar 

  103. 103

    Bullen, C. et al. Electronic cigarettes for smoking cessation: a randomised controlled trial. Lancet 382, 1629–1637 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Brown, J., Beard, E., Kotz, D., Michie, S. & West, R. Real-world effectiveness of e-cigarettes when used to aid smoking cessation: a cross-sectional population study. Addiction 109, 1531–1540 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Bhatnagar, A. et al. Electronic cigarettes: a policy statement from the American Heart Association. Circulation 130, 1418–1436 (2014).

    Article  PubMed  Google Scholar 

  106. 106

    Czernin, J. & Waldherr, C. Cigarette smoking and coronary blood flow. Prog. Cardiovasc. Dis. 45, 395–404 (2003).

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Chalon, S. et al. Nicotine impairs endothelium-dependent dilatation in human veins in vivo. Clin. Pharmacol. Ther. 67, 391–397 (2000).

    CAS  Article  PubMed  Google Scholar 

  108. 108

    Neunteufl, T. et al. Contribution of nicotine to acute endothelial dysfunction in long-term smokers. J. Am. Coll. Cardiol. 39, 251–256 (2002).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Ramachandran, J., Rubenstein, D., Bluestein, D. & Jesty, J. Activation of platelets exposed to shear stress in the presence of smoke extracts of low-nicotine and zero-nicotine cigarettes: the protective effect of nicotine. Nicotine Tob. Res. 6, 835–841 (2004).

    CAS  Article  PubMed  Google Scholar 

  110. 110

    Benowitz, N. L., Fitzgerald, G. A., Wilson, M. & Zhang, Q. Nicotine effects on eicosanoid formation and hemostatic function: comparison of transdermal nicotine and cigarette smoking. J. Am. Coll. Cardiol. 22, 1159–1167 (1993).

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Girdhar, G., Xu, S., Bluestein, D. & Jesty, J. Reduced-nicotine cigarettes increase platelet activation in smokers in vivo: a dilemma in harm reduction. Nicotine Tob. Res. 10, 1737–1744 (2008).

    CAS  Article  PubMed  Google Scholar 

  112. 112

    Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  113. 113

    Yashima, M. et al. Nicotine increases ventricular vulnerability to fibrillation in hearts with healed myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 278, H2124–H2133 (2000).

    CAS  Article  PubMed  Google Scholar 

  114. 114

    Engstrom, G., Hedblad, B., Janzon, L. & Juul-Moller, S. Ventricular arrhythmias during 24-h ambulatory ECG recording: incidence, risk factors and prognosis in men with and without a history of cardiovascular disease. J. Intern. Med. 246, 363–372 (1999).

    CAS  Article  PubMed  Google Scholar 

  115. 115

    Chelland Campbell, S. Moffatt, R. J. & Stamford, B. A. Smoking and smoking cessation — the relationship between cardiovascular disease and lipoprotein metabolism: a review. Atherosclerosis 201, 225–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Andersson, K. & Arner, P. Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors. Int. J. Obes. Relat. Metab. Disord. 25, 1225–1232 (2001).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    Haj Mouhamed, D. et al. Effect of cigarette smoking on insulin resistance risk. Ann. Cardiol. Angeiol. (Paris) 65, 21–25 (2016).

    CAS  Article  Google Scholar 

  118. 118

    Wu, Y. et al. Activation of AMPKalpha2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat. Med. 21, 373–382 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  119. 119

    Willi, C., Bodenmann, P., Ghali, W. A., Faris, P. D. & Cornuz, J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 298, 2654–2664 (2007).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Gideon St. Helen (University of California San Francisco, USA), for critical review of the manuscript and Tyson Douglass (University of California San Francisco, USA) for editorial assistance. The preparation of this Review is supported by US Public Health Service grants P50 CA180890 from the National Cancer Institute and Food and Drug Administration Center for Tobacco Products.

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, discussed the content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Neal L. Benowitz.

Ethics declarations

Competing interests

N.L.B. has been a consultant to GlaxoSmithKline and Pfizer, pharmaceutical companies that market medications to aid smoking cessation, and has served as a paid expert witness in litigation against tobacco companies. J.B.F. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benowitz, N., Fraiman, J. Cardiovascular effects of electronic cigarettes. Nat Rev Cardiol 14, 447–456 (2017). https://doi.org/10.1038/nrcardio.2017.36

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing