Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural killer T cells in atherosclerosis

Key Points

  • Natural killer T (NKT) cells are activated by the interaction of CD1d molecules containing antigenic exogenous lipids or endogenous self-lipids on antigen-presenting cells, with the semi-invariant T cell receptor on NKT cells

  • Antigenic lipids include glycolipids and phospholipids of microbial origin or self-lipids

  • NKT cells can also be activated in a CD1d-independent manner by Toll-like receptor stimulation of IL-18 and IL-22 secretion

  • Activation of NKT cells results in the rapid release of TH1, TH2, and TH17 cytokines and the cytotoxic proteins perforin and granzyme B

  • Numerous murine studies have shown that NKT cells are proatherogenic; NKT cells can promote atherosclerosis by activation of their secreted cytokines on immune cells present in the atherosclerotic lesion and by the induction of apoptosis by cytotoxic proteins

Abstract

Atherosclerosis is a chronic inflammatory disorder that develops in response to hyperlipidaemia. Cells from both the innate and adaptive immune systems contribute to the development of atherosclerotic lesions. The role of natural killer T (NKT) cells in response to microbial pathogens and inflammatory disorders such as atherosclerosis has received increasing attention in the past 10–15 years. Endogenous self-lipid antigens and exogenous lipid antigens, including those on microorganisms can activate NKT cells. CD1d molecules on antigen-presenting cells present these lipids to the T-cell receptor on NKT cells, which results in the rapid production of cytokines and cytotoxic proteins. NKT cells can also be activated in a CD1d-independent manner. Numerous studies have shown that NKT cells can promote atherogenesis. Various NKT cell sublineages have been described, but the participation of each in atherogenesis requires further characterization. In this Review, we provide an overview of NKT cells in the immune system, discuss CD1 molecules and lipid antigen presentation, and describe the interaction of the CD1d–NKT cell network with gut microbiota and its effect in modulating the activity or levels of NKT cells, which might in turn influence atherosclerosis. Although the exact mechanisms by which NKT cells promote atherosclerosis have not been fully elucidated, several potential mechanisms are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Invariant natural killer T (iNKT) cell sublineages.
Figure 2: Invariant natural killer T (iNKT) cells promote atherogenesis.
Figure 3: Gut microbiome and natural killer T (NKT) cells.

Similar content being viewed by others

References

  1. Witztum, J. L. & Lichtman, A. H. The influence of innate and adaptive immune responses on atherosclerosis. Annu. Rev. Pathol. 9, 73–102 (2014).

    CAS  PubMed  Google Scholar 

  2. Hilgendorf, I., Swirski, F. K. & Robbins, C. S. Monocyte fate in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 272–279 (2015).

    CAS  PubMed  Google Scholar 

  3. Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 119, 414–417 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

    CAS  PubMed  Google Scholar 

  5. Liao, C. M., Zimmer, M. I. & Wang, C. R. The functions of type I and type II natural killer T cells in inflammatory bowel diseases. Inflamm. Bowel Dis. 19, 1330–1338 (2013).

    PubMed  Google Scholar 

  6. Constantinides, M. G. & Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25, 161–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brennan, P. J., Brigl, M. & Brenner, M. B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13, 101–117 (2013).

    CAS  PubMed  Google Scholar 

  8. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    CAS  PubMed  Google Scholar 

  9. Van Kaer, L., Parekh, V. V. & Wu, L. Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol. 34, 50–58 (2013).

    CAS  PubMed  Google Scholar 

  10. Van Kaer, L., Parekh, V. V. & Wu, L. The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products. Front. Immunol. 6, 226 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. & Hogquist, K. A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    CAS  PubMed  Google Scholar 

  12. Monteiro, M. et al. Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. J. Immunol. 185, 2157–2163 (2010).

    CAS  PubMed  Google Scholar 

  13. Sag, D., Krause, P., Hedrick, C. C., Kronenberg, M. & Wingender, G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J. Clin. Invest. 124, 3725–3740 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lynch, L. et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat. Immunol. 16, 85–95 (2015).

    CAS  PubMed  Google Scholar 

  15. Van Rhijn, I., Godfrey, D. I., Rossjohn, J. & Moody, D. B. Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol. 15, 643–654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zimmer, M. I. et al. Polymorphisms in CD1d affect antigen presentation and the activation of CD1d-restricted T cells. Proc. Natl Acad. Sci. USA 106, 1909–1914 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vartabedian, V. F., Savage, P. B. & Teyton, L. The processing and presentation of lipids and glycolipids to the immune system. Immunol. Rev. 272, 109–119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson, B. L., Teyton, L., Bendelac, A. & Savage, P. B. Stimulation of natural killer T cells by glycolipids. Molecules 18, 15662–15688 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zajonc, D. M. & Girardi, E. Recognition of microbial glycolipids by natural killer T cells. Front. Immunol. 6, 400 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Ly, D. & Moody, D. B. The CD1 size problem: lipid antigens, ligands, and scaffolds. Cell. Mol. Life Sci. 71, 3069–3079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Felio, K. et al. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J. Exp. Med. 206, 2497–2509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 12, 204–212 (2011).

    CAS  PubMed  Google Scholar 

  23. Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    CAS  PubMed  Google Scholar 

  24. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barral, D. C. & Brenner, M. B. CD1 antigen presentation: how it works. Nat. Rev. Immunol. 7, 929–941 (2007).

    CAS  PubMed  Google Scholar 

  27. Zeissig, S. et al. Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. J. Clin. Invest. 120, 2889–2899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007).

    CAS  PubMed  Google Scholar 

  29. Schrantz, N. et al. The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. J. Exp. Med. 204, 841–852 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Adams, E. J. Diverse antigen presentation by the group 1 CD1 molecule, CD1c. Mol. Immunol. 55, 182–185 (2013).

    CAS  PubMed  Google Scholar 

  31. Kinjo, Y., Kitano, N. & Kronenberg, M. The role of invariant natural killer T cells in microbial immunity. J. Infect. Chemother. 19, 560–570 (2013).

    CAS  PubMed  Google Scholar 

  32. van den Elzen, P. et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437, 906–910 (2005).

    CAS  PubMed  Google Scholar 

  33. Allan, L. L. et al. Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells. Blood 114, 2411–2416 (2009).

    CAS  PubMed  Google Scholar 

  34. Freigang, S. et al. Scavenger receptors target glycolipids for natural killer T cell activation. J. Clin. Invest. 122, 3943–3954 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Covarrubias, R., Wilhelm, A. J. & Major, A. S. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells. PLoS ONE 9, e102236 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Van Kaer, L., Parekh, V. V. & Wu, L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res. 343, 43–55 (2011).

    PubMed  Google Scholar 

  37. Ait-Oufella, H., Taleb, S., Mallat, Z. & Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 969–979 (2011).

    CAS  PubMed  Google Scholar 

  38. Kleemann, R., Zadelaar, S. & Kooistra, T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc. Res. 79, 360–376 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Galli, G. et al. Invariant NKT cells sustain specific B cell responses and memory. Proc. Natl Acad. Sci. USA 104, 3984–3989 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tonti, E. et al. NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood 113, 370–376 (2009).

    CAS  PubMed  Google Scholar 

  41. Yang, J. Q., Wen, X., Kim, P. J. & Singh, R. R. Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner. J. Immunol. 186, 1512–1520 (2011).

    CAS  PubMed  Google Scholar 

  42. Curtiss, L. K. & Tobias, P. S. Emerging role of Toll-like receptors in atherosclerosis. J. Lipid Res. 50 (Suppl.), S340–S345 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Choi, S. H., Sviridov, D. & Miller, Y. I. Oxidized cholesteryl esters and inflammation. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbalip.2016.06.020 (2016).

  44. Rocha, D. M., Caldas, A. P., Oliveira, L. L., Bressan, J. & Hermsdorff, H. H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 244, 211–215 (2016).

    CAS  PubMed  Google Scholar 

  45. Fessler, M. B., Rudel, L. L. & Brown, J. M. Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr. Opin. Lipidol. 20, 379–385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Karlsson, F., Tremaroli, V., Nielsen, J. & Backhed, F. Assessing the human gut microbiota in metabolic diseases. Diabetes 62, 3341–3349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tai, N., Wong, F. S. & Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 16, 55–65 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miele, L. et al. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr. Cardiol. Rep. 17, 120 (2015).

    PubMed  Google Scholar 

  49. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Org, E., Mehrabian, M. & Lusis, A. J. Unraveling the environmental and genetic interactions in atherosclerosis: central role of the gut microbiota. Atherosclerosis 241, 387–399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, J. M. & Hazen, S. L. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 66, 343–359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Palm, N. W., de Zoete, M. R. & Flavell, R. A. Immune-microbiota interactions in health and disease. Clin. Immunol. 159, 122–127 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dowds, C. M., Blumberg, R. S. & Zeissig, S. Control of intestinal homeostasis through crosstalk between natural killer T cells and the intestinal microbiota. Clin. Immunol. 159, 128–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, H. & Luo, X. M. Control of commensal microbiota by the adaptive immune system. Gut Microbes 6, 156–160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeissig, S. & Blumberg, R. S. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr. Opin. Immunol. 25, 690–696 (2013).

    CAS  PubMed  Google Scholar 

  58. Wingender, G. et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143, 418–428 (2012).

    CAS  PubMed  Google Scholar 

  59. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. McDonald, B. D., Constantinides, M. G. & Bendelac, A. Polarized effector programs for innate-like thymocytes. Nat. Immunol. 14, 1110–1111 (2013).

    CAS  PubMed  Google Scholar 

  62. Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Barral, P., Sanchez-Nino, M. D., van Rooijen, N., Cerundolo, V. & Batista, F. D. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J. 31, 2378–2390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    PubMed  PubMed Central  Google Scholar 

  65. Nieuwenhuis, E. E. et al. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J. Clin. Invest. 119, 1241–1250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Erridge, C. Diet, commensals and the intestine as sources of pathogen-associated molecular patterns in atherosclerosis, type 2 diabetes and non-alcoholic fatty liver disease. Atherosclerosis 216, 1–6 (2011).

    CAS  PubMed  Google Scholar 

  67. Getz, G. S., Vanderlaan, P. A. & Reardon, C. A. Natural killer T cells in lipoprotein metabolism and atherosclerosis. Thromb. Haemost. 106, 814–819 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lynch, L. et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37, 574–587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. VanderLaan, P. A. et al. Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis. Am. J. Pathol. 170, 1100–1107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin-Murphy, B. V. et al. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLoS ONE 9, e80949 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Subramanian, S. et al. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. J. Lipid Res. 54, 2831–2841 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakai, Y. et al. Natural killer T cells accelerate atherogenesis in mice. Blood 104, 2051–2059 (2004).

    CAS  PubMed  Google Scholar 

  73. Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199, 417–422 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Major, A. S. et al. Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24, 2351–2357 (2004).

    CAS  PubMed  Google Scholar 

  75. Braun, N. A. et al. Development of spontaneous anergy in invariant natural killer T cells in a mouse model of dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 30, 1758–1765 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rogers, L. et al. Deficiency of invariant V alpha 14 natural killer T cells decreases atherosclerosis in LDL receptor null mice. Cardiovasc. Res. 78, 167–174 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Aslanian, A. M., Chapman, H. A. & Charo, I. F. Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 25, 628–632 (2005).

    CAS  PubMed  Google Scholar 

  78. van Puijvelde, G. H. et al. Effect of natural killer T cell activation on the initiation of atherosclerosis. Thromb. Haemost. 102, 223–230 (2009).

    CAS  PubMed  Google Scholar 

  79. Li, Y. et al. CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circ. Res. 116, 245–254 (2015).

    CAS  PubMed  Google Scholar 

  80. Matsuda, J. L. et al. Homeostasis of V alpha 14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    CAS  PubMed  Google Scholar 

  81. Thorp, E., Subramanian, M. & Tabas, I. The role of macrophages and dendritic cells in the clearance of apoptotic cells in advanced atherosclerosis. Eur. J. Immunol. 41, 2515–2518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kanellakis, P. et al. High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 313–319 (2011).

    CAS  PubMed  Google Scholar 

  83. Pan, Y. et al. The western-type diet induces anti-HMGB1 autoimmunity in Apoe−/− mice. Atherosclerosis 251, 31–38 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, Y. et al. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE−/− mice by reducing lesion necrosis and inflammation. Cardiovasc. Res. 109, 305–317 (2016).

    PubMed  Google Scholar 

  85. Wu, L. et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc. Natl Acad. Sci. USA 109, E1143–E1152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Satoh, M. et al. Type II NKT cells stimulate diet-induced obesity by mediating adipose tissue inflammation, steatohepatitis and insulin resistance. PLoS ONE 7, e30568 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Strodthoff, D. et al. Lack of invariant natural killer T cells affects lipid metabolism in adipose tissue of diet-induced obese mice. Arterioscler. Thromb. Vasc. Biol. 33, 1189–1196 (2013).

    CAS  PubMed  Google Scholar 

  88. Omar, A., Chatterjee, T. K., Tang, Y., Hui, D. Y. & Weintraub, N. L. Proinflammatory phenotype of perivascular adipocytes. Arterioscler. Thromb. Vasc. Biol. 34, 1631–1636 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Majesky, M. W. Adventitia and perivascular cells. Arterioscler. Thromb. Vasc. Biol. 35, e31–e35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Andoh, Y. et al. Natural killer T cells are required for lipopolysaccharide-mediated enhancement of atherosclerosis in apolipoprotein E-deficient mice. Immunobiology 218, 561–569 (2013).

    CAS  PubMed  Google Scholar 

  91. Siddiqui, S., Visvabharathy, L. & Wang, C. R. Role of group 1 CD1-restricted T cells in infectious disease. Front. Immunol. 6, 337 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Wun, K. S. et al. Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex. J. Biol. Chem. 287, 39139–39148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cox, D. et al. Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 4, e5325 (2009).

    PubMed  PubMed Central  Google Scholar 

  94. Fox, L. M. et al. Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol. 7, e1000228 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Pei, B. et al. Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J. Immunol. 186, 1348–1360 (2011).

    CAS  PubMed  Google Scholar 

  96. Maricic, I., Girardi, E., Zajonc, D. M. & Kumar, V. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. J. Immunol. 193, 4580–4589 (2014).

    CAS  PubMed  Google Scholar 

  97. Bobryshev, Y. V. & Lord, R. S. Co-accumulation of dendritic cells and natural killer T cells within rupture-prone regions in human atherosclerotic plaques. J. Histochem. Cytochem. 53, 781–785 (2005).

    CAS  PubMed  Google Scholar 

  98. Chan, W. L. et al. Atherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cells. Circ. Res. 96, 675–683 (2005).

    CAS  PubMed  Google Scholar 

  99. Kyriakakis, E. et al. Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. Eur. J. Immunol. 40, 3268–3279 (2010).

    CAS  PubMed  Google Scholar 

  100. Chatterjee, S. B., Dey, S., Shi, W. Y., Thomas, K. & Hutchins, G. M. Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7, 57–65 (1997).

    CAS  PubMed  Google Scholar 

  101. Schulze, H. & Sandhoff, K. Lysosomal lipid storage diseases. Cold Spring Harb. Perspect. Biol. 3, a004804 (2011).

    PubMed  PubMed Central  Google Scholar 

  102. Felley, L. & Gumperz, J. E. Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood? Immunogenetics 68, 611–622 (2016).

    CAS  PubMed  Google Scholar 

  103. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    CAS  PubMed  Google Scholar 

  104. Christiansen, D. et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol. 6, e172 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Weismann, D. & Binder, C. J. The innate immune response to products of phospholipid peroxidation. Biochim. Biophys. Acta 1818, 2465–2475 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Purcell-Huynh, D. A. et al. Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet. J. Clin. Invest. 95, 2246–2257 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. VanderLaan, P. A., Reardon, C. A. & Getz, G. S. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler. Thromb. Vasc. Biol. 24, 12–22 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institutes of Health grant HL088420.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Godfrey S. Getz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getz, G., Reardon, C. Natural killer T cells in atherosclerosis. Nat Rev Cardiol 14, 304–314 (2017). https://doi.org/10.1038/nrcardio.2017.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing