Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of titin in cardiomyopathy: from DNA variants to patient stratification

Key Points

  • Titin-truncating variants (TTNtv) are strongly associated with dilated cardiomyopathy (DCM), but are also prevalent in the general population

  • TTNtv identified through genetic testing of patients with confirmed DCM might be clinically actionable and informative for the management of probands and their families

  • The relevance of TTNtv identified through sequencing for other indications is not well defined; such variants can be associated with increased risk of DCM, but in aggregate are not highly penetrant

  • Haploinsufficiency caused by TTNtv does not clearly explain all the associated molecular and physiological consequences, suggesting that other mechanisms also contribute to disease pathogenesis

  • Important genetic and environmental determinants of TTNtv penetrance and expressivity remain to be identified

Abstract

Dilated cardiomyopathy (DCM) affects approximately 1 in 250 individuals and is the leading indication for heart transplantation. DCM is often familial, and the most common genetic predisposition is a truncating variation in the giant sarcomeric protein, titin, which occurs in up to 15% of ambulant patients with DCM and 25% of end-stage or familial cases. In this article, we review the evidence for the role of titin truncation in the pathogenesis of DCM and our understanding of the molecular mechanisms and pathophysiological consequences of variation in the gene encoding titin (TTN). Such variation is common in the general population (up to 1% of individuals), and we consider key features that discriminate variants with disease-causing potential from those that are benign. We summarize strategies for clinical interpretation of genetic variants for use in the diagnosis of patients and the evaluation of their relatives. Finally, we consider the contemporary and potential future role for genetic stratification in cardiomyopathy and in the general population, evaluating titin variation as a predictor of outcome and treatment response for precision medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of titin in the sarcomere and a summary of isoforms.
Figure 2: Ribosome profiling reveals translation of truncating alleles.
Figure 3: Consequences of titin-truncating variants.
Figure 4: Age-related penetrance of titin-truncating variants.
Figure 5: Clinical interpretation of TTNtv in a patient with DCM.

Similar content being viewed by others

References

  1. Linke, W. A. & Hamdani, N. Gigantic business. Circ. Res. 114, 1052–1068 (2014).

    CAS  PubMed  Google Scholar 

  2. Tskhovrebova, L. & Trinick, J. Roles of titin in the structure and elasticity of the sarcomere. J. Biomed. Biotechnol. 2010, 1–7 (2010).

    Google Scholar 

  3. Linke, W. A. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 77, 637–648 (2008).

    CAS  PubMed  Google Scholar 

  4. Gautel, M. The sarcomeric cytoskeleton: who picks up the strain? Curr. Opin. Cell Biol. 23, 39–46 (2011).

    CAS  PubMed  Google Scholar 

  5. Puchner, E. M. et al. Mechanoenzymatics of titin kinase. Proc. Natl Acad. Sci. USA 105, 13385–13390 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fürst, D. O., Osborn, M., Nave, R. & Weber, K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J. Cell Biol. 106, 1563–1572 (1988).

    PubMed  Google Scholar 

  7. Labeit, S. et al. A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345, 273–276 (1990).

    CAS  PubMed  Google Scholar 

  8. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    CAS  PubMed  Google Scholar 

  9. Freiburg, A. et al. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ. Res. 86, 1114–1121 (2000).

    CAS  PubMed  Google Scholar 

  10. Luciano Brocchieri, S. K. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 33, 3390–3400 (2005).

    PubMed  PubMed Central  Google Scholar 

  11. Bang, M. L. et al. The complete gene sequence of titin, expression of an unusual 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ. Res. 89, 1065–1072 (2001).

    CAS  PubMed  Google Scholar 

  12. Neagoe, C., Opitz, C. A., Makarenko, I. & Linke, W. A. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J. Muscle Res. Cell Motil. 24, 175–189 (2003).

    CAS  PubMed  Google Scholar 

  13. Neagoe, C. et al. Titin isoform switch in ischemic human heart disease. Circulation 106, 1333–1341 (2002).

    PubMed  Google Scholar 

  14. Nagueh, S. F. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110, 155–162 (2004).

    CAS  PubMed  Google Scholar 

  15. Makarenko, I. et al. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ. Res. 95, 708–716 (2004).

    CAS  PubMed  Google Scholar 

  16. Borbély, A. et al. Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ. Res. 104, 780–786 (2009).

    PubMed  Google Scholar 

  17. Opitz, C. A. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res. 94, 967–975 (2004).

    CAS  PubMed  Google Scholar 

  18. Zou, J. et al. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of titin in zebrafish. eLife 4, 1065–1036 (2015).

    Google Scholar 

  19. Schafer, S. et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49, 46–53 (2017).

    CAS  PubMed  Google Scholar 

  20. Pinto, Y. M. et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 14, 1850–1858 (2016).

    Google Scholar 

  21. Hershberger, R. E., Hedges, D. J. & Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547 (2013).

    CAS  PubMed  Google Scholar 

  22. Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 29, 270–276 (2008).

    PubMed  Google Scholar 

  23. Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ware, J. S. et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 374, 233–241 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Køber et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N. Engl. J. Med. 375, 1221–1230 (2016).

    PubMed  Google Scholar 

  26. Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309, 896–908 (2013).

    CAS  PubMed  Google Scholar 

  27. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    PubMed  Google Scholar 

  28. Stehlik, J. et al. The registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report — 2011. J. Heart Lung Transplant. 30, 1078–1094 (2011).

    PubMed  Google Scholar 

  29. Haravuori, H. et al. Assignment of the tibial muscular dystrophy locus to chromosome 2q31. Am. J. Hum. Genet. 62, 620–626 (2017).

    Google Scholar 

  30. Siu, B. L. et al. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99, 1022–1026 (1999).

    CAS  PubMed  Google Scholar 

  31. Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 30, 201–204 (2002).

    CAS  PubMed  Google Scholar 

  32. Xu, X. et al. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat. Genet. 30, 205–209 (2002).

    CAS  PubMed  Google Scholar 

  33. Gerull, B. et al. Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy. J. Mol. Med. 84, 478–483 (2006).

    CAS  PubMed  Google Scholar 

  34. Carmignac, V. et al. C-Terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann. Neurol. 61, 340–351 (2007).

    CAS  PubMed  Google Scholar 

  35. Norton, N. et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 144–153 (2013).

    CAS  PubMed  Google Scholar 

  36. Pugh, T. J. et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet. Med. 16, 601–608 (2014).

    CAS  PubMed  Google Scholar 

  37. van Spaendonck-Zwarts, K. Y. et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur. Heart J. 35, 2165–2173 (2014).

    PubMed  Google Scholar 

  38. Roberts, A. M. et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl Med. 7, 270ra6 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135 (2015).

    CAS  PubMed  Google Scholar 

  40. Akinrinade, O. et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur. Heart J. 36, 2327–2337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Walsh, R. et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 19, 192–203 (2017).

    PubMed  Google Scholar 

  42. Franaszczyk, M. et al. Titin truncating variants in dilated cardiomyopathy — prevalence and genotype-phenotype correlations. PLoS ONE 12, e0169007 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Tayal, U. et al. Phenotype and clinical outcomes of titin cardiomyopathy. J. Am. Coll. Cardiol. 18, 2264–2274 (2017).

    Google Scholar 

  44. Fatkin, D. et al. Titin truncating mutations: a rare cause of dilated cardiomyopathy in the young. Prog. Pediatr. Cardiol. 40, 41–45 (2016).

    Google Scholar 

  45. van Spaendonck-Zwarts, K. Y. et al. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 121, 2169–2175 (2010).

    PubMed  Google Scholar 

  46. Hastings, R. et al. Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ. Cardiovasc. Genet. 9, 426–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ceyhan-Birsoy, O. et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 81, 1205–1214 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chauveau, C. et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum. Mol. Genet. 23, 980–991 (2014).

    CAS  PubMed  Google Scholar 

  49. Pfeffer, G. et al. Titin founder mutation is a common cause of myofibrillar myopathy with early respiratory failure. J. Neurol. Neurosurg. Psychiatry 85, 331–338 (2014).

    PubMed  Google Scholar 

  50. Palmio, J. et al. Hereditary myopathy with early respiratory failure: occurrence in various populations. J. Neurol. Neurosurg. Psychiatry 85, 345–353 (2014).

    PubMed  Google Scholar 

  51. Fernández-Marmiesse, A. et al. Homozygous truncating mutation in prenatally expressed skeletal isoform of TTN gene results in arthrogryposis multiplex congenita and myopathy without cardiac involvement. Neuromuscul. Disord. 27, 188–192 (2017).

    PubMed  Google Scholar 

  52. Chauveau, C., Rowell, J. & Ferreiro, A. A rising titan: TTN review and mutation update. Hum. Mutat. 35, 1046–1059 (2014).

    CAS  PubMed  Google Scholar 

  53. Lopes, L. R. et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 50, 228–239 (2013).

    CAS  PubMed  Google Scholar 

  54. Satoh, M. et al. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem. Biophys. Res. Commun. 262, 411–417 (1999).

    CAS  PubMed  Google Scholar 

  55. Arimura, T. et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 54, 334–342 (2009).

    CAS  PubMed  Google Scholar 

  56. Li, S., Guo, W., Dewey, C. N. & Greaser, M. L. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 41, 2659–2672 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Beqqali, A. et al. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism. Cardiovasc. Res. 112, 452–463 (2016).

    CAS  PubMed  Google Scholar 

  59. LeWinter, M. M. & Granzier, H. L. Titin is a major human disease gene. Circulation 127, 938–944 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Watkins, H. et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat. Genet. 11, 434–437 (1995).

    CAS  PubMed  Google Scholar 

  61. Bonne, G. et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat. Genet. 11, 438–440 (1995).

    CAS  PubMed  Google Scholar 

  62. Redwood, C. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc. Res. 44, 20–36 (1999).

    CAS  PubMed  Google Scholar 

  63. Marston, S. et al. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ. Res. 105, 219–222 (2009).

    CAS  PubMed  Google Scholar 

  64. Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Harding, S. E., MacLeod, K. T., Jones, S. M., Vescovo, G. & Poole-Wilson, P. A. Contractile responses of myocytes isolated from patients with cardiomyopathy. Eur. Heart J. 12 (Suppl. D), 44–48 (1991).

    PubMed  Google Scholar 

  66. Song, W. et al. Investigation of a transgenic mouse model of familial dilated cardiomyopathy. J. Mol. Cell. Cardiol. 49, 380–389 (2010).

    CAS  PubMed  Google Scholar 

  67. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    CAS  PubMed  Google Scholar 

  68. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 113, 709–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lai, L. et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 7, 1022–1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shibayama, J. et al. Metabolic remodeling in moderate synchronous versus dyssynchronous pacing-induced heart failure: integrated metabolomics and proteomics study. PLoS ONE 10, e0118974 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Schisler, J. C. et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J. Am. Heart Assoc. 4, e001136 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Neishabouri, S. H., Hutson, S. M. & Davoodi, J. Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 47, 1167–1182 (2015).

    CAS  PubMed  Google Scholar 

  73. Ramos, F. J. et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl Med. 4, 144ra103 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. Yano, T. et al. Clinical impact of myocardial mTORC1 activation in nonischemic dilated cardiomyopathy. J. Mol. Cell. Cardiol. 91, 6–9 (2016).

    CAS  PubMed  Google Scholar 

  75. Radke, M. H. et al. Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc. Natl Acad. Sci. USA 104, 3444–3449 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lunde, I. G. et al. A deletion in the N2A region of titin carried by muscular dystrophy with myositis (mdm) mice severely affects skeletal muscle, but not the heart [abstract]. Circ. Res. 115 (Suppl. 1), A279 (2014).

    Google Scholar 

  77. Gramlich, M. et al. Stress-induced dilated cardiomyopathy in a knock-in mouse model mimicking human titin-based disease. J. Mol. Cell. Cardiol. 47, 352–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lunde, I. G. et al. Titin A-band truncation in mice causes stress-induced dilated cardiomyopathy [abstract]. Presented at the 14th Annual Center for Heart Failure Research Symposium on Heart Failure (2016).

  79. Jansweijer, J. A. et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur. J. Heart Fail. 19, 512–521 (2016).

    PubMed  Google Scholar 

  80. Tayal, U. et al. Truncating variants in titin independently predict early arrhythmias in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 69, 2466–2468 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Ackerman, M. J. et al. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13, 1077–1109 (2011).

    PubMed  Google Scholar 

  82. Charron, P. et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 31, 2715–2726 (2010).

    PubMed  Google Scholar 

  83. McMurray, J. J. V. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    PubMed  Google Scholar 

  84. Yancy, C. W. et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128, e240–e327 (2013).

    PubMed  Google Scholar 

  85. Akinrinade, O., Koskenvuo, J. W. & Alastalo, T.-P. Prevalence of titin truncating variants in general population. PLoS ONE 10, e0145284 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–423 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Minikel, E. V. et al. Quantifying prion disease penetrance using large population control cohorts. Sci. Transl Med. 8, 322ra9 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Whiffin, N. et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet. Med. 19, 1151–1158 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rivas, M. A. et al. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 348, 666–669 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Holbrook, J. A., Neu-Yilik, G., Hentze, M. W. & Kulozik, A. E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 36, 801–808 (2004).

    CAS  PubMed  Google Scholar 

  92. Nagy, E. & Maquat, L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    CAS  PubMed  Google Scholar 

  93. Deo, R. C. Alternative splicing, internal promoter, nonsense-mediated decay, or all three. Circ. Cardiovasc. Genet. 9, 419–425 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Van Buggenhout, G. et al. The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients. Eur. J. Med. Genet. 48, 276–289 (2005).

    CAS  PubMed  Google Scholar 

  95. Prontera, P., Bernardini, L. & Dallapiccola, B. 2q31.2q32.3 deletion syndrome: report of an adult patient. Am. J. Med. Genet. A 149A, 706–712 (2009).

    PubMed  Google Scholar 

  96. Mencarelli, M. A. et al. Clinical and molecular characterization of a patient with a 2q31.2-32.3 deletion identified by array-CGH. Am. J. Med. Genet. A 143A, 858–865 (2007).

    CAS  PubMed  Google Scholar 

  97. Rifai, L. et al. Ectodermal dysplasia-like syndrome with mental retardation due to contiguous gene deletion: Further clinical and molecular delineation of del(2q32) syndrome. Am. J. Med. Genet. A 152A, 111–117 (2009).

    Google Scholar 

  98. Mitter, D. et al. Genotype-phenotype correlation in eight new patients with a deletion encompassing 2q31.1. Am. J. Med. Genet. A 152A, 1213–1224 (2010).

    PubMed  Google Scholar 

  99. Manolakos, E. et al. Deletion 2q31.2-q31.3 in a 4-year-old girl with microcephaly and severe mental retardation. Am. J. Med. Genet. 155, 1476–1482 (2011).

    CAS  Google Scholar 

  100. Taylor, M. R. G. et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 41, 771–780 (2003).

    CAS  PubMed  Google Scholar 

  101. Berlo, J. H. et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J. Mol. Med. 83, 79–83 (2004).

    PubMed  Google Scholar 

  102. Felkin, L. E. et al. Recovery of cardiac function in cardiomyopathy caused by titin truncation. JAMA Cardiol. 1, 234–235 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Luk, K. et al. Recovery in patients with dilated cardiomyopathy with loss-of-function mutations in the titin gene. JAMA Cardiol. 2, 700–702 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Mann, D. L., Barger, P. M. & Burkhoff, D. Myocardial recovery and the failing heart: myth, magic, or molecular target? J. Am. Coll. Cardiol. 60, 2465–2472 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. Linschoten, M. et al. Truncating titin (TTN) variants in chemotherapy-induced cardiomyopathy. J. Card. Fail. 23, 476–479 (2017).

    CAS  PubMed  Google Scholar 

  106. Gramlich, M. et al. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol. Med. 7, 562–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Aartsma-Rus, A. & Krieg, A. M. FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid. Ther. 27, 1–3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wilkie, A. O. The molecular basis of genetic dominance. J. Med. Genet. 31, 89–98 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Zofia T. Bilinska (Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland) for providing access to the data for Figure 4, and acknowledge support from the British Heart Foundation; Fondation Leducq; Medical Research Council, UK; National Medical Research Council Singapore; National Institute for Health Research (NIHR) Imperial Biomedical Research Centre; NIHR Royal Brompton Biomedical Research Unit; SingHealth Duke–National University Singapore (Duke–NUS) Institute of Precision Medicine; and Wellcome Trust (107469/Z/15/Z).

Author information

Authors and Affiliations

Authors

Contributions

J.S.W. and S.A.C. researched data for the article, discussed the content, wrote the manuscript, and reviewed and/or edited the article before submission.

Corresponding authors

Correspondence to James S. Ware or Stuart A. Cook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (box)

Assigning risk and causality to genetic variants. (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ware, J., Cook, S. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol 15, 241–252 (2018). https://doi.org/10.1038/nrcardio.2017.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing