Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of pulmonary arterial hypertension in children

Key Points

  • Pulmonary arterial hypertension (PAH) is a symptom of various pathologies and is frequently associated with progressive deterioration; PAH is an important cause of morbidity and mortality in children

  • Current therapies for PAH target the vascular calcium channel as well as abnormalities in the endothelin, nitric oxide, and prostacyclin signalling pathways

  • Advances in basic and clinical research into PAH have led to improved understanding of disease pathogenesis and identification of novel therapeutic targets

  • Only a minority of drugs for PAH are officially approved in children, because randomized controlled studies are limited by the small number of paediatric patients with PAH

  • Interventional and surgical strategies are increasingly performed in children with severe PAH refractory to medical therapy, to relieve right ventricular pressure overload, improve left ventricular performance, and support systemic circulation

  • Developments in PAH-specific therapy as well as surgical and interventional procedures for severe PAH might delay or even avoid the need for lung transplantation

Abstract

Pulmonary arterial hypertension (PAH) is an important cause of morbidity and mortality in children. Improved understanding of the pathophysiological mechanisms of the underlying diseases has resulted in the development of effective, but not yet curative, therapies. Currently, drugs from three main pharmacological groups targeting specific aberrant pathways (endothelin, nitric oxide, and prostacyclin) and four routes of administration (inhaled, intravenous, oral, and subcutaneous) have been approved for adult patients with PAH. However, only a minority of these drugs has been officially approved for children, mainly because randomized controlled studies are limited by the small number of paediatric patients with PAH worldwide. In children with progressive, severe PAH and an inadequate response to drug therapy, advances in interventional and surgical approaches have provided promising new strategies to avoid right ventricular deterioration. These techniques can delay or even avoid the need for lung transplantation. In this Review, we present an update on developments in drug therapy for patients with PAH and highlight the current status of these treatments in children. We also describe the new surgical, interventional, and hybrid procedures, as well as their practical application in children with severe PAH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment algorithm for children with idiopathic or familial pulmonary arterial hypertension.
Figure 2: Treatment strategy in patients with suprasystemic hypertension owing to borderline left ventricular morphology.
Figure 3: Contrast-enhanced angiographic images of a stented persistent ductus arteriosus (arrows) in two patients with suprasystemic pulmonary hypertension allowing decompression of the right ventricle by a right-to-left shunt through the persistent ductus arteriosus into the descending aorta (asterisks), thereby causing a decrease in pulmonary arterial pressures to systemic level.

Similar content being viewed by others

References

  1. Galiè, N. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 34, 1219–1263 (2009).

    Article  PubMed  Google Scholar 

  2. Berger, R. M. et al. Clinical features of paediatric pulmonary hypertension: a registry study. Lancet 379, 537–546 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Loon, R. L. et al. Pediatric pulmonary hypertension in the Netherlands: epidemiology and characterization during the period 1991 to 2005. Circulation 124, 1755–1764 (2011).

    Article  PubMed  Google Scholar 

  4. Gaine, S. Pulmonary hypertension. JAMA 284, 3160–3168 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Zijlstra, W. M. et al. Survival differences in pediatric pulmonary arterial hypertension: clues to a better understanding of outcome and optimal treatment strategies. J. Am. Coll. Cardiol. 63, 2159–2169 (2014).

    Article  PubMed  Google Scholar 

  6. Barst, R. J. et al. Survival in childhood pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management. Circulation 125, 113–122 (2012).

    Article  PubMed  Google Scholar 

  7. Ivy, D. D. et al. Long-term outcomes in children with pulmonary arterial hypertension treated with bosentan in real-world clinical settings. Am. J. Cardiol. 106, 1332–1338 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moledina, S., Hislop, A. A., Foster, H., Schulze-Neick, I. & Haworth, S. G. Childhood idiopathic pulmonary arterial hypertension: a national cohort study. Heart 96, 1401–1406 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. van Loon, R. L. et al. Outcome of pediatric patients with pulmonary arterial hypertension in the era of new medical therapies. Am. J. Cardiol. 106, 117–124 (2010).

    Article  PubMed  Google Scholar 

  10. Blanc, J., Vouhé, P. & Bonnet, D. Potts shunt in patients with pulmonary hypertension. N. Engl. J. Med. 350, 623 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Labombarda, F., Maragnes, P., Dupont-Chauvet, P. & Serraf, A. Potts anastomosis for children with idiopathic pulmonary hypertension. Pediatr. Cardiol. 30, 1143–1145 (2009).

    Article  PubMed  Google Scholar 

  12. Latus, H. et al. Potts shunt and atrial septostomy in pulmonary hypertension caused by left ventricular disease. Ann. Thorac. Surg. 96, 317–319 (2013).

    Article  PubMed  Google Scholar 

  13. Latus, H. et al. Creation of a functional Potts shunt by stenting the persistent arterial duct in newborns and infants with suprasystemic pulmonary hypertension of various etiologies. J. Heart Lung Transplant. 33, 542–546 (2014).

    Article  PubMed  Google Scholar 

  14. Baruteau, A. E. et al. Potts shunt in children with idiopathic pulmonary arterial hypertension: long-term results. Ann. Thorac. Surg. 94, 817–824 (2012).

    Article  PubMed  Google Scholar 

  15. Diller, G. P. & Gatzoulis, M. A. Pulmonary vascular disease in adults with congenital heart disease. Circulation 115, 1039–1050 (2007).

    Article  PubMed  Google Scholar 

  16. Beghetti, M. & Galiè, N. Eisenmenger syndrome a clinical perspective in a new therapeutic era of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 53, 733–740 (2009).

    Article  PubMed  Google Scholar 

  17. Hopkins, W. E., Ochoa, L. L., Richardson, G. W. & Trulock, E. P. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J. Heart Lung Transplant. 15, 100–105 (1996).

    CAS  PubMed  Google Scholar 

  18. Barst, R. J., Ivy, D. D., Foreman, A. J., McGoon, M. D. & Rosenzweig, E. B. Four- and seven-year outcomes of patients with congenital heart disease-associated pulmonary arterial hypertension (from the REVEAL Registry). Am. J. Cardiol. 113, 147–155 (2014).

    Article  PubMed  Google Scholar 

  19. Ivy, D. D. et al. Pediatric pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D117–D126 (2013).

    Article  PubMed  Google Scholar 

  20. Beghetti, M. et al. Diagnostic evaluation of paediatric pulmonary hypertension in current clinical practice. Eur. Respir. J. 42, 689–700 (2013).

  21. Yung, D. et al. Outcomes in children with idiopathic pulmonary arterial hypertension. Circulation 110, 660–665 (2004).

    Article  PubMed  Google Scholar 

  22. Barst, R. J., Maislin, G. & Fishman, A. P. Vasodilator therapy for primary pulmonary hypertension in children. Circulation 99, 1197–1208 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Barst, R. J., Agnoletti, G., Fraisse, A., Baldassarre, J. & Wessel, D. L. Vasodilator testing with nitric oxide and/or oxygen in pediatric pulmonary hypertension. Pediatr. Cardiol. 31, 598–606 (2010).

    Article  PubMed  Google Scholar 

  24. Douwes, J. M. et al. Acute pulmonary vasodilator response in paediatric and adult pulmonary arterial hypertension: occurrence and prognostic value when comparing three response criteria. Eur. Heart J. 32, 3137–3146 (2011).

    Article  PubMed  Google Scholar 

  25. Fraisse, A. et al. Characteristics and prospective 2-year follow-up of children with pulmonary arterial hypertension in France. Arch. Cardiovasc. Dis. 103, 66–74 (2010).

    Article  PubMed  Google Scholar 

  26. Rich, S., Kaufmann, E. & Levy, P. S. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N. Engl. J. Med. 327, 76–81 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Sitbon, O. et al. Inhaled nitric oxide as a screening agent for safely identifying responders to oral calcium-channel blockers in primary pulmonary hypertension. Eur. Respir. J. 12, 265–270 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Humbert, M. et al. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 173, 1023–1030 (2006).

    Article  PubMed  Google Scholar 

  29. Sitbon, O. et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111, 3105–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Apitz, C. et al. Assessment of pulmonary endothelial function during invasive testing in children and adolescents with idiopathic pulmonary arterial hypertension. J. Am. Coll. Cardiol. 60, 157–164 (2012).

    Article  PubMed  Google Scholar 

  31. Galiè, N. et al. Updated treatment algorithm of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D60–D72 (2013).

    Article  PubMed  Google Scholar 

  32. Barst, R. J., Ertel, S. I., Beghetti, M. & Ivy, D. D. Pulmonary arterial hypertension: a comparison between children and adults. Eur. Respir. J. 37, 665–677 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galié, N., Manes, A. & Branzi, A. The endothelin system in pulmonary arterial hypertension. Cardiovasc. Res. 61, 227–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Channick, R. N. et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 358, 1119–1123 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Beghetti, M. Current treatment options in children with pulmonary arterial hypertension and experiences with oral bosentan. Eur. J. Clin. Invest. 36 (Suppl. 3), 16–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Barst, R. J. et al. Pharmacokinetics, safety, and efficacy of bosentan in pediatric patients with pulmonary arterial hypertension. Clin. Pharmacol. Ther. 73, 372–382 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Beghetti, M. et al. Pharmacokinetic and clinical profile of a novel formulation of bosentan in children with pulmonary arterial hypertension: the FUTURE-1 study. Br. J. Clin. Pharmacol. 68, 948–955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beghetti, M. Bosentan in pediatric patients with pulmonary arterial hypertension. Curr. Vasc. Pharmacol. 7, 225–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Hislop, A. A., Moledina, S., Foster, H., Schulze-Neick, I. & Haworth, S. G. Long-term efficacy of bosentan in treatment of pulmonary arterial hypertension in children. Eur. Respir. J. 38, 70–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Rosenzweig, E. B. et al. Effects of long-term bosentan in children with pulmonary arterial hypertension. J. Am. Coll. Cardiol. 46, 697–704 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Galiè, N. et al. Ambrisentan therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 46, 529–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Galiè, N. et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 117, 3010–3019 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. McGoon, M. D. et al. Ambrisentan therapy in patients with pulmonary arterial hypertension who discontinued bosentan or sitaxsentan due to liver function test abnormalities. Chest 135, 122–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Takatsuki, S. et al. Clinical safety, pharmacokinetics, and efficacy of ambrisentan therapy in children with pulmonary arterial hypertension. Pediatr. Pulmonol. 48, 27–34 (2013).

    Article  PubMed  Google Scholar 

  46. Hoeper, M. M., Olsson, K. M., Schneider, A. & Golpon, H. Severe hepatitis associated with sitaxentan and response to glucocorticoid therapy. Eur. Respir. J. 33, 1518–1519 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Galiè, N., Hoeper, M. M., Gibbs, J. S. & Simonneau, G. Liver toxicity of sitaxentan in pulmonary arterial hypertension. Eur. Respir. J. 37, 475–476 (2011).

    Article  PubMed  Google Scholar 

  48. Rubin, L. J. et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest 140, 1274–1283 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Humpl, T. et al. Sildenafil therapy for neonatal and childhood pulmonary hypertensive vascular disease. Cardiol. Young 21, 187–193 (2011).

    Article  PubMed  Google Scholar 

  50. Humpl, T., Reyes, J. T., Holtby, H., Stephens, D. & Adatia, I. Beneficial effect of oral sildenafil therapy on childhood pulmonary arterial hypertension: twelve-month clinical trial of a single-drug, open-label, pilot study. Circulation 111, 3274–3280 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Apitz, C., Reyes, J. T., Holtby, H., Humpl, T. & Redington, A. N. Pharmacokinetic and hemodynamic responses to oral sildenafil during invasive testing in children with pulmonary hypertension. J. Am. Coll. Cardiol. 55, 1456–1462 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Barst, R. J. et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation 125, 324–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Barst, R. J. et al. STARTS-2: long-term survival with oral Sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. Circulation 129, 1914–1923 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. U.S. Department of Health & Human Services. U.S. FDA. Revatio (sildenafil): Drug Safety Communication—Recommendation Against Use in Children [online], (2012).

  55. Abman, S. H. et al. Implications of the U.S. Food and Drug Administration warning against the use of sildenafil for the treatment of pediatric pulmonary hypertension. Am. J. Respir. Crit. Care Med. 187, 572–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. McElhinney, D. B. A new START for sildenafil in pediatric pulmonary hypertension: reframing the dose-survival relationship in the STARTS-2 trial. Circulation 129, 1905–1908 (2014).

    Article  PubMed  Google Scholar 

  57. Samiee-Zafarghandy, S., Smith, P. B. & van den Anker, J. N. Safety of sildenafil in infants. Pediatr. Crit. Care Med. 15, 362–368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wardle, A. J. & Tulloh, R. M. Paediatric pulmonary hypertension and sildenafil: current practice and controversies. Arch. Dis. Child. Educ. Pract. Ed. 98, 141–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. U.S. Department of Health & Human Services. U.S. FDA. FDA Drug Safety Communication: FDA clarifies Warning about Pediatric Use of Revatio (sildenafil) for Pulmonary Arterial Hypertension [online], (2014).

  60. Nagendran, J. et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116, 238–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Steinhorn, R. H. et al. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J. Pediatr. 155, 841–847.e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Fraisse, A. et al. Intravenous sildenafil for postoperative pulmonary hypertension in children with congenital heart disease. Intensive Care Med. 37, 502–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Oudiz, R. J. et al. Tadalafil for the treatment of pulmonary arterial hypertension: a double-blind 52-week uncontrolled extension study. J. Am. Coll. Cardiol. 60, 768–774 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Takatsuki, S., Calderbank, M. & Ivy, D. D. Initial experience with tadalafil in pediatric pulmonary arterial hypertension. Pediatr. Cardiol. 33, 683–688 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Douwes, J. M. et al. Sildenafil add-on therapy in paediatric pulmonary arterial hypertension, experiences of a national referral centre. Heart 100, 224–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kemp, K. et al. Usefulness of first-line combination therapy with epoprostenol and bosentan in pulmonary arterial hypertension: an observational study. J. Heart Lung Transplant. 31, 150–158 (2012).

    Article  PubMed  Google Scholar 

  67. Barst, R. J. et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N. Engl. J. Med. 334, 296–301 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Rubin, L. J. et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol): results of a randomized trial. Ann. Intern. Med. 112, 485–491 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Barst, R. J. et al. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann. Intern. Med. 121, 409–415 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Olschewski, H. et al. Inhaled iloprost for severe pulmonary hypertension. N. Engl. J. Med. 347, 322–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Voswinckel, R. et al. Favorable effects of inhaled treprostinil in severe pulmonary hypertension: results from randomized controlled pilot studies. J. Am. Coll. Cardiol. 48, 1672–1681 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Simonneau, G. et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 165, 800–804 (2002).

    Article  PubMed  Google Scholar 

  73. Ivy, D. D. et al. Short- and long-term effects of inhaled iloprost therapy in children with pulmonary arterial hypertension. J. Am. Coll. Cardiol. 51, 161–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Krishnan, U. et al. Effectiveness and safety of inhaled treprostinil for the treatment of pulmonary arterial hypertension in children. Am. J. Cardiol. 110, 1704–1709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Levy, M. et al. Add-on therapy with subcutaneous treprostinil for refractory pediatric pulmonary hypertension. J. Pediatr. 158, 584–588 (2011).

    Article  PubMed  Google Scholar 

  76. Siehr, S. L. et al. Children with pulmonary arterial hypertension and prostanoid therapy: long-term hemodynamics. J. Heart Lung Transplant. 32, 546–552 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Galiè, N. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J. 30, 2493–2537 (2009).

    Article  PubMed  Google Scholar 

  78. Nickel, N. et al. The prognostic impact of follow-up assessments in patients with idiopathic pulmonary arterial hypertension. Eur. Respir. J. 39, 589–596 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Gomberg-Maitland, M. et al. New trial designs and potential therapies for pulmonary artery hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D82–D91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gatfield, J. et al. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells. PLoS ONE 7, e47662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dingemanse, J., Sidharta, P. N., Maddrey, W. C., Rubin, L. J. & Mickail, H. Efficacy, safety and clinical pharmacology of macitentan in comparison to other endothelin receptor antagonists in the treatment of pulmonary arterial hypertension. Expert Opin. Drug Saf. 13, 391–405 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Pulido, T. et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N. Engl. J. Med. 369, 809–818 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Ghofrani, H. A. et al. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 369, 330–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Hoeper, M. M. et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 127, 1128–1138 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Simonneau, G. et al. Selexipag: an oral, selective prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. Eur. Respir. J. 40, 874–880 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  87. Pullamsetti, S. S. et al. Novel and emerging therapies for pulmonary hypertension. Am. J. Respir. Crit. Care Med. 189, 394–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, X. X. et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J. Am. Coll. Cardiol. 49, 1566–1571 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, J. H. et al. Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: open-label pilot study. Pediatr. Transplant. 12, 650–655 (2008).

    Article  PubMed  Google Scholar 

  90. Fujio, H. et al. Carvedilol inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension. J. Cardiovasc. Pharmacol. 47, 250–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Bogaard, H. J. et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am. J. Respir. Crit. Care Med. 182, 652–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Alkon, J. et al. Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension. Am. J. Cardiol. 106, 430–436 (2010).

    Article  PubMed  Google Scholar 

  93. Thenappan, T., Roy, S. S., Duval, S., Glassner-Kolmin, C. & Gomberg-Maitland, M. Beta-blocker therapy is not associated with adverse outcomes in patients with pulmonary arterial hypertension: a propensity score analysis. Circ. Heart Fail. 7, 903–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Grinnan, D. et al. Treatment of group I pulmonary arterial hypertension with carvedilol is safe. Am. J. Respir. Crit. Care Med. 189, 1562–1564 (2014).

    Article  PubMed  Google Scholar 

  95. Olsson, K. M. et al. Anticoagulation and survival in pulmonary arterial hypertension: results from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Circulation 129, 57–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Rich, S. et al. The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension. Chest 114, 787–792 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Grunig, E. et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur. Respir. J. 40, 84–92 (2012).

    Article  PubMed  Google Scholar 

  98. Grunig, E. et al. Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respiration 81, 394–401 (2011).

    Article  PubMed  Google Scholar 

  99. Mereles, D. et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 114, 1482–1489 (2006).

    Article  PubMed  Google Scholar 

  100. Becker-Grunig, T. et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int. J. Cardiol. 168, 375–381 (2013).

    Article  PubMed  Google Scholar 

  101. Raymond, R. J. et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J. Am. Coll. Cardiol. 39, 1214–1219 (2002).

    Article  PubMed  Google Scholar 

  102. Benza, R. L. et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest 142, 448–456 (2012).

    Article  PubMed  Google Scholar 

  103. Kidd, L. et al. Second natural history study of congenital heart defects: results of treatment of patients with ventricular septal defects. Circulation 87 (Suppl.), I38–I51 (1993).

    CAS  PubMed  Google Scholar 

  104. Saha, A. et al. Prognosis for patients with Eisenmenger syndrome of various aetiology. Int. J. Cardiol. 45, 199–207 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Diller, G. P. et al. Presentation, survival prospects, and predictors of death in Eisenmenger syndrome: a combined retrospective and case-control study. Eur. Heart J. 27, 1737–1742 (2006).

    Article  PubMed  Google Scholar 

  106. Hopkins, W. E. & Waggoner, A. D. Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome. Am. J. Cardiol. 89, 34–38 (2002).

    Article  PubMed  Google Scholar 

  107. Kerstein, D. et al. Blade balloon atrial septostomy in patients with severe primary pulmonary hypertension. Circulation 91, 2028–2035 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Nihill, M. R., O'Laughlin, M. P. & Mullins, C. E. Effects of atrial septostomy in patients with terminal cor pulmonale due to pulmonary vascular disease. Cathet. Cardiovasc. Diagn. 24, 166–172 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Sandoval, J. et al. Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension: a therapeutic alternative for patients nonresponsive to vasodilator treatment. J. Am. Coll. Cardiol. 32, 297–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Micheletti, A. et al. Role of atrial septostomy in the treatment of children with pulmonary arterial hypertension. Heart 92, 969–972 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Law, M. A., Grifka, R. G., Mullins, C. E. & Nihill, M. R. Atrial septostomy improves survival in select patients with pulmonary hypertension. Am. Heart J. 153, 779–784 (2007).

    Article  PubMed  Google Scholar 

  112. Keogh, A. M. et al. Interventional and surgical modalities of treatment in pulmonary hypertension. J. Am. Coll. Cardiol. 54 (Suppl.), S67–S77 (2009).

    Article  PubMed  Google Scholar 

  113. Lammers, A. E., Haworth, S. G. & Diller, G. P. Atrial septostomy in patients with pulmonary hypertension: should it be recommended? Expert Rev. Respir. Med. 5, 363–376 (2011).

    Article  PubMed  Google Scholar 

  114. Rich, S. & Lam, W. Atrial septostomy as palliative therapy for refractory primary pulmonary hypertension. Am. J. Cardiol. 51, 1560–1561 (1983).

    Article  CAS  PubMed  Google Scholar 

  115. Ciarka, A. et al. Atrial septostomy decreases sympathetic overactivity in pulmonary arterial hypertension. Chest 131, 1831–1837 (2007).

    Article  PubMed  Google Scholar 

  116. Velez-Roa, S. et al. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 110, 1308–1312 (2004).

    Article  PubMed  Google Scholar 

  117. Sandoval, J., Rothman, A. & Pulido, T. Atrial septostomy for pulmonary hypertension. Clin. Chest Med. 22, 547–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Diller, G. P. et al. A modelling study of atrial septostomy for pulmonary arterial hypertension, and its effect on the state of tissue oxygenation and systemic blood flow. Cardiol. Young 20, 25–32 (2010).

    Article  PubMed  Google Scholar 

  119. Espinola-Zavaleta, N. et al. Echocardiographic evaluation of patients with primary pulmonary hypertension before and after atrial septostomy. Echocardiography 16, 625–634 (1999).

    Article  PubMed  Google Scholar 

  120. O'Byrne, M. L., Rosenzweig, E. S. & Barst, R. J. The effect of atrial septostomy on the concentration of brain-type natriuretic peptide in patients with idiopathic pulmonary arterial hypertension. Cardiol. Young 17, 557–559 (2007).

    Article  PubMed  Google Scholar 

  121. Klepetko, W. et al. Interventional and surgical modalities of treatment for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43 (Suppl. S), 73S–80S (2004).

    Article  PubMed  Google Scholar 

  122. Rich, S., Dodin, E. & McLaughlin, V. V. Usefulness of atrial septostomy as a treatment for primary pulmonary hypertension and guidelines for its application. Am. J. Cardiol. 80, 369–371 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Potts, W. J., Smith, S. & Gibson, S. Anastomosis of the aorta to a pulmonary artery; certain types in congenital heart disease. J. Am. Med. Assoc. 132, 627–631 (1946).

    Article  CAS  PubMed  Google Scholar 

  124. Esch, J. J. et al. Transcatheter Potts shunt creation in patients with severe pulmonary arterial hypertension: initial clinical experience. J. Heart Lung Transplant. 32, 381–387 (2013).

    Article  PubMed  Google Scholar 

  125. Guo, K. et al. Anatomical considerations for the development of a new transcatheter aortopulmonary shunt device in patients with severe pulmonary arterial hypertension. Pulm. Circ. 3, 639–646 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sayadpour Zanjani, K. Radiofrequency perforation may increase the safety of transcatheter Potts shunt creation. J. Heart Lung Transplant. 32, 938 (2013).

    Article  PubMed  Google Scholar 

  127. Michel-Behnke, I. et al. Stenting of the ductus arteriosus and banding of the pulmonary arteries: basis for various surgical strategies in newborns with multiple left heart obstructive lesions. Heart 89, 645–650 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Michel-Behnke, I. et al. Stent implantation in the ductus arteriosus for pulmonary blood supply in congenital heart disease. Catheter. Cardiovasc. Interv. 61, 242–252 (2004).

    Article  PubMed  Google Scholar 

  129. Schranz, D. et al. Fifteen-year single center experience with the “Giessen hybrid” approach for hypoplastic left heart and variants: current strategies and outcomes. Pediatr. Cardiol. http://dx.doi.org/10.1007/s00246-014-1015-2.

  130. Akinturk, H. et al. Hybrid transcatheter-surgical palliation: basis for univentricular or biventricular repair: the Giessen experience. Pediatr. Cardiol. 28, 79–87 (2007).

    Article  PubMed  Google Scholar 

  131. Akintuerk, H. et al. Stenting of the arterial duct and banding of the pulmonary arteries: basis for combined Norwood stage I and II repair in hypoplastic left heart. Circulation 105, 1099–1103 (2002).

    Article  PubMed  Google Scholar 

  132. Schranz, D. et al. Stent implantation of the arterial duct in newborns with a truly duct-dependent pulmonary circulation: a single-center experience with emphasis on aspects of the interventional technique. J. Interv. Cardiol. 23, 581–588 (2010).

    Article  PubMed  Google Scholar 

  133. Boudjemline, Y. et al. Patent ductus arteriosus stenting (transcatheter Potts shunt) for palliation of suprasystemic pulmonary arterial hypertension: a case series. Circ. Cardiovasc. Interv. 6, e18–e20 (2013).

    Article  PubMed  Google Scholar 

  134. Petersen, C., Helvind, M., Jensen, T. & Andersen, H. O. Potts shunt in a child with end-stage pulmonary hypertension after late repair of ventricular septal defect. World J. Pediatr. Congenit. Heart Surg. 4, 286–289 (2013).

    Article  PubMed  Google Scholar 

  135. Bui, M. T. et al. Surgical palliation of primary pulmonary arterial hypertension by a unidirectional valved Potts anastomosis in an animal model. J. Thorac. Cardiovasc. Surg. 142, 1223–1228 (2011).

    Article  PubMed  Google Scholar 

  136. van Loon, R. L. et al. Pediatric pulmonary hypertension in the Netherlands: epidemiology and characterization during the period 1991 to 2005. Circulation 124, 1755–1764 (2011).

    Article  PubMed  Google Scholar 

  137. Cavigelli-Brunner, A. et al. Outcome of biventricular repair in infants with multiple left heart obstructive lesions. Pediatr. Cardiol. 33, 506–512 (2012).

    Article  PubMed  Google Scholar 

  138. Brauner, R. A., Laks, H., Drinkwater, D. C. Jr, Scholl, F. & McCaffery, S. Multiple left heart obstructions (Shone's anomaly) with mitral valve involvement: long-term surgical outcome. Ann. Thorac. Surg. 64, 721–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Malhotra, S. P. et al. Outcomes of reparative and transplantation strategies for multilevel left heart obstructions with mitral stenosis. Ann. Thorac. Surg. 86, 1305–1309 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Vlahos, A. P., Lock, J. E., McElhinney, D. B. & van der Velde, M. E. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation 109, 2326–2330 (2004).

    Article  PubMed  Google Scholar 

  141. Vida, V. L. et al. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: surgical experience from a single center. Ann. Thorac. Surg. 84, 581–585 (2007).

    Article  PubMed  Google Scholar 

  142. Rychik, J., Rome, J. J., Collins, M. H., DeCampli, W. M. & Spray, T. L. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J. Am. Coll. Cardiol. 34, 554–560 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Latus, H., Yerebakan, C., Schranz, D. & Akintuerk, H. Right ventricular failure from severe pulmonary hypertension after surgery for shone complex: back to fetal physiology with reducting, atrioseptectomy, and bilateral pulmonary arterial banding. J. Thorac. Cardiovasc. Surg. 148, e226–e228 (2014).

    Article  PubMed  Google Scholar 

  144. Davlouros, P. A. et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J. Am. Coll. Cardiol. 40, 2044–2052 (2002).

    Article  PubMed  Google Scholar 

  145. Frigiola, A., Redington, A. N., Cullen, S. & Vogel, M. Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot. Circulation 110 (Suppl. 1), II153–II157 (2004).

    CAS  PubMed  Google Scholar 

  146. Frigiola, A. et al. Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: is age a predictor of outcome? Circulation 118 (Suppl.), S182–S190 (2008).

    Article  PubMed  Google Scholar 

  147. Tobler, D. et al. The left heart after pulmonary valve replacement in adults late after tetralogy of Fallot repair. Int. J. Cardiol. 160, 165–170 (2012).

    Article  PubMed  Google Scholar 

  148. Gan, C. T. et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 290, H1528–H1533 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Friedberg, M. K. & Redington, A. N. Right versus left ventricular failure: differences, similarities, and interactions. Circulation 129, 1033–1044 (2014).

    Article  PubMed  Google Scholar 

  150. Damiano, R. J. Jr, La Follette, P. Jr, Cox, J. L., Lowe, J. E. & Santamore, W. P. Significant left ventricular contribution to right ventricular systolic function. Am. J. Physiol. 261, H1514–H1524 (1991).

    PubMed  Google Scholar 

  151. Apitz, C. et al. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J. Thorac. Cardiovasc. Surg. 144, 1494–1501 (2012).

    Article  PubMed  Google Scholar 

  152. Schranz, D. et al. Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J. Heart Lung Transplant. 32, 475–481 (2013).

    Article  PubMed  Google Scholar 

  153. Burns, K. M. et al. New mechanistic and therapeutic targets for pediatric heart failure: report from a National Heart, Lung, and Blood Institute working group. Circulation 130, 79–86 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Calkins, H. et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm 9, 632–696.e21 (2012).

    Article  PubMed  Google Scholar 

  155. Schlaich, M. P. et al. International expert consensus statement: percutaneous transluminal renal denervation for the treatment of resistant hypertension. J. Am. Coll. Cardiol. 62, 2031–2045 (2013).

    Article  PubMed  Google Scholar 

  156. Chen, S. L. et al. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J. Am. Coll. Cardiol. 62, 1092–1100 (2013).

    Article  PubMed  Google Scholar 

  157. Benden, C. et al. The registry of the International Society for Heart and Lung Transplantation: sixteenth official pediatric lung and heart–lung transplantation report—2013; focus theme: age. J. Heart Lung Transplant. 32, 989–997 (2013).

    Article  PubMed  Google Scholar 

  158. Trulock, E. P. et al. Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult lung and heart–lung transplantation report—2006. J. Heart Lung Transplant. 25, 880–892 (2006).

    Article  PubMed  Google Scholar 

  159. Valapour, M. et al. OPTN/SRTR 2011 annual data report: lung. Am. J. Transplant. 13 (Suppl. 1), 149–177 (2013).

    Article  PubMed  Google Scholar 

  160. Goldstein, B. S., Sweet, S. C., Mao, J., Huddleston, C. B. & Grady, R. M. Lung transplantation in children with idiopathic pulmonary arterial hypertension: an 18-year experience. J. Heart Lung Transplant. 30, 1148–1152 (2011).

    Article  PubMed  Google Scholar 

  161. Adatia, I. et al. Clinical trials in neonates and children: report of the pulmonary hypertension academic research consortium pediatric advisory committee. Pulm. Circ. 3, 252–266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.L. and C.A. researched data for the article, and all the authors discussed its content. H.L. and C.A. wrote the manuscript. T.D. and D.S. reviewed and edited the article before submission.

Corresponding author

Correspondence to Christian Apitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latus, H., Delhaas, T., Schranz, D. et al. Treatment of pulmonary arterial hypertension in children. Nat Rev Cardiol 12, 244–254 (2015). https://doi.org/10.1038/nrcardio.2015.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing