Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Environmental factors in cardiovascular disease

Key Points

  • Environmental exposure, over which the individual has little control, can have an important role in the development and severity of cardiovascular disease (CVD)

  • The WHO has identified air pollution as the world's largest single environmental-health risk, and 80% of deaths related to outdoor air pollution result from ischaemic heart disease and stroke

  • Metals such as lead, cadmium, and arsenic—listed among the WHO's top 10 environmental chemicals of concern—also mediate the development and progression of CVD

  • Exposure to fine particulate matter, a major component in urban air pollution, is associated with mortality and cardiovascular risk, even at concentrations below current US and EU regulatory standards

  • Effects occur via pathways known to affect cardiovascular risk, including changes in blood pressure, lipids, vascular function, and atherosclerosis

  • With the widespread prevalence of exposure, policy interventions that reduce environmental pollution can have substantial beneficial effects on cardiovascular health for populations around the world

Abstract

Environmental exposure is an important but underappreciated risk factor contributing to the development and severity of cardiovascular disease (CVD). The heart and vascular system are highly vulnerable to a number of environmental agents—ambient air pollution and the metals arsenic, cadmium, and lead are widespread and the most-extensively studied. Like traditional risk factors, such as smoking and diabetes mellitus, these exposures advance disease and mortality via augmentation or initiation of pathophysiological processes associated with CVD, including blood-pressure control, carbohydrate and lipid metabolism, vascular function, and atherogenesis. Although residence in highly polluted areas is associated with high levels of cardiovascular risk, adverse effects on cardiovascular health also occur at exposure levels below current regulatory standards. Considering the widespread prevalence of exposure, even modest contributions to CVD risk can have a substantial effect on population health. Evidence-based clinical and public-health strategies aimed at reducing environmental exposures from current levels could substantially lower the burden of CVD-related death and disability worldwide.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A framework for the characterization of the effects of environmental factors in cardiovascular disease.
Figure 2: Size categorization of airborne pollutants.
Figure 3: Cardiovascular effects and proposed mechanisms of chronic exposure to traffic-related air pollution.
Figure 4: Cardiovascular effects and proposed mechanisms of acute exposure to traffic-related air pollution.
Figure 5: Possible mechanisms for the cardiovascular effects of exposure to arsenic.

References

  1. World Health Organization. Global status report on noncommunicable diseases 2010 [online], (2011).

  2. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhatnagar, A. Cardiovascular pathophysiology of environmental pollutants. Am. J. Physiol. Heart Circ. Physiol. 286, H479–H485 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Csordas, A. & Bernhard, D. The biology behind the atherothrombotic effects of cigarette smoke. Nat. Rev. Cardiol. 10, 219–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. World Health Organization. Ambient (outdoor) air quality and health [online], (2014).

  7. Wong, E. On scale of 0 to 500, Beijing's air quality tops 'crazy bad' at 755. The New York Times, A16 (12 Jan 2013).

    Google Scholar 

  8. Krzyzanowski, M. et al. Air pollution in mega-cities. Curr. Env. Health Rep. 1, 185–191 (2014).

    Article  CAS  Google Scholar 

  9. United States Environmental Protection Agency. Our nation's air-status and trends through 2010 [online], (2012).

  10. Kam, W., Liacos, J. W., Schauer, J. J., Delfino, R. J. & Sioutas, C. Size-segregated composition of particulate matter (PM) in major roadways and surface streets. Atmos. Environ. 55, 90–97 (2012).

    Article  CAS  Google Scholar 

  11. World Health Organization. Burden of disease from household air pollution for 2012 [online], (2014).

  12. Rom, W. N., Boushey, H. & Caplan, A. Experimental human exposure to air pollutants is essential to understand adverse health effects. Am. J. Respir. Cell Mol. Biol. 49, 691–696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramsay, S. E. et al. Inequalities in heart failure in older men: prospective associations between socioeconomic measures and heart failure incidence in a 10-year follow-up study. Eur. Heart J. 35, 442–447 (2014).

    Article  PubMed  Google Scholar 

  14. Romieu, I. et al. Multicity study of air pollution and mortality in Latin America (the ESCALA study). Res. Rep. Health Eff. Inst. 171, 5–86 (2012).

    CAS  Google Scholar 

  15. Dockery, D. W. et al. An association between air pollution and mortality in six U. S. cities. N. Engl. J. Med. 329, 1753–1759 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Pope, C. A. 3rd. et al. Particulate air pollution as a predictor of mortality in a prospective-study of U. S. adults. Am. J. Respir. Crit. Care Med. 151, 669–674 (1995).

    Article  PubMed  Google Scholar 

  17. Laden, F., Schwartz, J., Speizer, F. E. & Dockery, D. W. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 173, 667–672 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pope, C. A. 3rd et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109, 71–77 (2004).

    Article  PubMed  Google Scholar 

  19. Hoek, G. et al. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ. Health 12, 43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, L. W. et al. Long-term exposure to high particulate matter pollution and cardiovascular mortality: a 12-year cohort study in four cities in northern China. Environ. Int. 62, 41–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Pun, V. C. et al. Differential effects of source-specific particulate matter on emergency hospitalizations for ischemic heart disease in Hong Kong. Environ. Health Perspect. 122, 391–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beelen, R. et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383, 785–795 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Lepeule, J., Laden, F., Dockery, D. & Schwartz, J. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 120, 965–970 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miller, K. A. et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 356, 447–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Cesaroni, G. et al. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 348, f7412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Atkinson, R. W. et al. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 24, 44–53 (2013).

    Article  PubMed  Google Scholar 

  27. Lipsett, M. J. et al. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am. J. Respir. Crit. Care Med. 184, 828–835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crouse, D. L. et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environ. Health Perspect. 120, 708–714 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hart, J. E., Chiuve, S. E., Laden, F. & Albert, C. M. Roadway proximity and risk of sudden cardiac death in women. Circulation 130, 1474–1482 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Madrigano, J. et al. Long-term exposure to PM2.5 and incidence of acute myocardial infarction. Environ. Health Perspect. 121, 192–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Hart, J. E., Rimm, E. B., Rexrode, K. M. & Laden, F. Changes in traffic exposure and the risk of incident myocardial infarction and all-cause mortality. Epidemiology 24, 734–742 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koton, S. et al. Cumulative exposure to particulate matter air pollution and long-term post-myocardial infarction outcomes. Prev. Med. 57, 339–344 (2013).

    Article  PubMed  Google Scholar 

  33. Wilker, E. H. et al. Residential proximity to high-traffic roadways and poststroke mortality. J. Stroke Cerebrovasc. Dis. 22, e366–e372 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eze, I. C. et al. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ. Int. 70, 95–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Jerrett, M. et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ. Health 13, 49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pearson, J. F., Bachireddy, C., Shyamprasad, S., Goldfine, A. B. & Brownstein, J. S. Association between fine particulate matter and diabetes prevalence in the U. S. Diabetes Care 33, 2196–2201 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Krämer, U. et al. Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ. Health Perspect. 118, 1273–1279 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen, H. et al. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ. Health Perspect. 121, 804–810 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. et al. Long-term exposure to ambient air pollution and serum leptin in older adults: results from the MOBILIZE Boston study. J. Occup. Environ. Med. 56, e73–e77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baja, E. S. et al. Traffic-related air pollution and QT interval: modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ. Health Perspect. 118, 840–846 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park, S. K. et al. Particulate air pollution, metabolic syndrome, and heart rate variability: the multi-ethnic study of atherosclerosis (MESA). Environ. Health Perspect. 118, 1406–1411 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rückerl, R. et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ. Int. 70, 32–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Pascal, M. et al. Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities. Atmos. Environ. 95, 175–184 (2014).

    Article  CAS  Google Scholar 

  44. Meister, K., Johansson, C. & Forsberg, B. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 120, 431–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Atkinson, R. W., Kang, S., Anderson, H. R., Mills, I. C. & Walton, H. A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 69, 660–665 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y., Eliot, M. N. & Wellenius, G. A. Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis. J. Am. Heart Assoc. 3, e000983 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Adar, S. D., Filigrana, P. A., Clements, N. & Peel, J. L. Ambient coarse particulate matter and human health: a systematic review and meta-analysis. Curr. Environ. Health Rep. 1, 258–274 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wellenius, G. A., Bateson, T. F., Mittleman, M. A. & Schwartz, J. Particulate air pollution and the rate of hospitalization for congestive heart failure among Medicare beneficiaries in Pittsburgh, Pennsylvania. Am. J. Epidemiol. 161, 1030–1036 (2005).

    Article  PubMed  Google Scholar 

  49. Milojevic, A. et al. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart 100, 1093–1098 (2014).

    Article  PubMed  Google Scholar 

  50. Zanobetti, A., Dominici, F., Wang, Y. & Schwartz, J. D. A national case-crossover analysis of the short-term effect of PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders. Environ. Health 13, 38 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mustafic, H. et al. Main air pollutants and myocardial infarction a systematic review and meta-analysis. JAMA 307, 713–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Nawrot, T. S., Perez, L., Künzli, N., Munters, E. & Nemery, B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet 377, 732–740 (2011).

    Article  PubMed  Google Scholar 

  53. Wellenius, G. A. et al. Ambient air pollution and the risk of acute ischemic stroke. Arch. Intern. Med. 172, 229–234 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Andersen, Z. J. et al. Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark. Eur. Heart J. 31, 2034–2040 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Gardner, B. et al. Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. Part. Fibre Toxicol. 11, 1 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dominici, F. et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127–1134 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stafoggia, M. et al. Short-term associations between fine and coarse particulate matter and hospitalizations in southern europe: results from the MED-PARTICLES project. Environ. Health Perspect. 121, 1026–1033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo, Y. et al. The relationship between particulate air pollution and emergency hospital visits for hypertension in Beijing, China. Sci. Total Environ. 408, 4446–4450 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Xie, W. et al. Relationship between fine particulate air pollution and ischaemic heart disease morbidity and mortality. Heart 101, 257–263 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Rosenthal, F. S. et al. Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: evidence for two different etiologies. J. Expo. Sci. Environ. Epidemiol. 23, 281–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Teng, T. H. et al. A systematic review of air pollution and incidence of out-of-hospital cardiac arrest. J. Epidemiol. Community Health 68, 37–43 (2014).

    Article  PubMed  Google Scholar 

  62. Peters, A. et al. Triggering of acute myocardial infarction by different means of transportation. Eur. J. Prev. Cardiol. 20, 750–758 (2013).

    Article  PubMed  Google Scholar 

  63. Sørensen, M. et al. Long-term exposure to traffic-related air pollution associated with blood pressure and self-reported hypertension in a Danish cohort. Environ. Health Perspect. 120, 418–424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Louwies, T. et al. Blood pressure changes in association with black carbon exposure in a panel of healthy adults are independent of retinal microcirculation. Environ. Int. 75, 81–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Schwartz, J. et al. Association between long-term exposure to traffic particles and blood pressure in the Veterans Administration Normative Aging Study. Occup. Environ. Med. 69, 422–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Fuks, K. B. et al. Arterial blood pressure and long-term exposure to traffic-related air pollution: an analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Environ. Health Perspect. 122, 896–905 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Delfino, R. J. et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology 21, 396–404 (2010).

    Article  PubMed  Google Scholar 

  68. Foraster, M. et al. Association of long-term exposure to traffic-related air pollution with blood pressure and hypertension in an adult population-based cohort in Spain (the REGICOR Study). Environ. Health Perspect. 122, 404–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kirwa, K. et al. Residential proximity to major roadways and prevalent hypertension among postmenopausal women: results from the Women's Health Initiative San Diego Cohort. J. Am. Heart Assoc. 3, e000727 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen, H. et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 129, 562–569 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Coogan, P. F. et al. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation 125, 767–772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cosselman, K. E. et al. Blood pressure response to controlled diesel exhaust exposure in human subjects. Hypertension 59, 943–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Bellavia, A. et al. DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments. J. Am. Heart Assoc. 2, e000212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Auchincloss, A. H. et al. Associations between recent exposure to ambient fine particulate matter and blood pressure in the Multi-ethnic Study of Atherosclerosis (MESA). Environ. Health Perspect. 116, 486–491 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brook, R. D. et al. Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. Environ. Health Perspect. 122, 624–630 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van den Hooven, E. H. et al. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy the generation R study. Hypertension 57, 406–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Xu, X. H., Hu, H., Ha, S. & Roth, J. Ambient air pollution and hypertensive disorder of pregnancy. J. Epidemiol. Community Health 68, 13–20 (2014).

    Article  PubMed  Google Scholar 

  78. Vinikoor-Imler, L. C., Gray, S. C., Edwards, S. E. & Miranda, M. L. The effects of exposure to particulate matter and neighbourhood deprivation on gestational hypertension. Paediatr. Perinat. Epidemiol. 26, 91–100 (2012).

    Article  PubMed  Google Scholar 

  79. Dadvand, P. et al. Particulate air pollution and preeclampsia: a source-based analysis. Occup. Environ. Med. 71, 570–577 (2014).

    Article  PubMed  Google Scholar 

  80. Pedersen, M. et al. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension 64, 494–500 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Hampel, R. et al. Short-term impact of ambient air pollution and air temperature on blood pressure among pregnant women. Epidemiology 22, 671–679 (2011).

    Article  PubMed  Google Scholar 

  82. Stieb, D. M., Chen, L., Eshoul, M. & Judek, S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ. Res. 117, 100–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Gorr, M. W. et al. Early life exposure to air pollution induces adult cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 307, H1353–H1360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wilker, E. H. et al. Relation of long-term exposure to air pollution to brachial artery flow-mediated dilation and reactive hyperemia. Am. J. Cardiol. 113, 2057–2063 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Krishnan, R. M. et al. Vascular responses to long- and short-term exposure to fine particulate matter: MESA Air (Multi-Ethnic Study of Atherosclerosisi and Air Pollution). J. Am. Coll. Cardiol. 60, 2158–2166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barath, S. et al. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Part. Fibre Toxicol. 7, 19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peretz, A. et al. Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ. Health Perspect. 116, 937–942 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Adar, S. D. et al. Air Pollution and the microvasculature: a cross-sectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA). PLoS Med. 7, e1000372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Louwies, T., Panis, L. I., Kicinski, M., De Boever, P. & Nawrot, T. S. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ. Health Perspect. 121, 1011–1016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zanobetti, A. et al. T-wave alternans, air pollution and traffic in high-risk subjects. Am. J. Cardiol. 104, 665–670 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cakmak, S. et al. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ. Pollut. 189, 208–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, M. S. et al. Oxidative stress and systemic inflammation as modifiers of cardiac autonomic responses to particulate air pollution. Int. J. Cardiol. 176, 166–170 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Anderson, H. R. et al. Air pollution and activation of implantable cardioverter defibrillators in London. Epidemiology 21, 405–413 (2010).

    Article  PubMed  Google Scholar 

  94. Bunch, T. J. et al. Atrial fibrillation hospitalization is not increased with short-term elevations in exposure to fine particulate air pollution. Pacing Clin. Electrophysiol. 34, 1475–1479 (2011).

    Article  PubMed  Google Scholar 

  95. Langrish, J. P. et al. Controlled exposures to air pollutants and risk of cardiac arrhythmia. Environ. Health Perspect. 122, 747–753 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Heart Fail. 5, 452–461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kawut, S. M. et al. Right ventricular structure is associated with the risk of heart failure and cardiovascular death: the Multi-Ethnic Study of Atherosclerosis (MESA)—right ventricle study. Circulation 126, 1681–1688 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Leary, P. J. et al. Traffic-related air pollution and the right ventricle. The multi-ethnic study of atherosclerosis. Am. J. Respir. Crit. Care Med. 189, 1093–1100 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Van Hee, V. C. et al. Exposure to traffic and left ventricular mass and function: the Multi-Ethnic Study of Atherosclerosis. Am. J. Respir. Crit. Care Med. 179, 827–834 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Heckbert, S. R. et al. Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J. Am. Coll. Cardiol. 48, 2285–2292 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yin, F. et al. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 33, 1153–1161 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Quan, C. L., Sun, Q. H., Lippmann, M. & Chen, L. C. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal. Toxicol. 22, 738–753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Miller, M. R. et al. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part. Fibre Toxicol. 10, 61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun, Q. H. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294, 3003–3010 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Bai, N. et al. Changes in atherosclerotic plaques induced by inhalation of diesel exhaust. Atherosclerosis 216, 299–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Campen, M. J. et al. Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE(−/−) mice. Toxicol. Appl. Pharmacol. 242, 310–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Bauer, M. et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. J. Am. Coll. Cardiol. 56, 1803–1808 (2010).

    Article  PubMed  Google Scholar 

  108. Künzli, N. et al. Investigating air pollution and atherosclerosis in humans: concepts and outlook. Prog. Cardiovasc. Dis. 53, 334–343 (2011).

    Article  PubMed  Google Scholar 

  109. Wilker, E. H. et al. Long-term exposure to black carbon and carotid intima-media thickness: the normative aging study. Environ. Health Perspect. 121, 1061–1067 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lambrechtsen, J. et al. The relation between coronary artery calcification in asymptomatic subjects and both traditional risk factors and living in the city centre: a DanRisk substudy. J. Intern. Med. 271, 444–450 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Newby, D. E. et al. Expert position paper on air pollution and cardiovascular disease. Eur Heart J. 36, 83–93b (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Langrish, J. P. et al. Cardiovascular effects of particulate air pollution exposure: time course and underlying mechanisms. J. Intern. Med. 272, 224–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Gill, E. A. et al. Air pollution and cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Prog. Cardiovasc. Dis. 53, 353–360 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cherng, T. W., Campen, M. J., Knuckles, T. L., Gonzalez Bosc, L. & Kanagy, N. L. Impairment of coronary endothelial cell ET(B) receptor function after short-term inhalation exposure to whole diesel emissions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R640–R647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rodríguez-Pascual, F., Busnadiego, O., Lagares, D. & Lamas, S. Role of endothelin in the cardiovascular system. Pharmacol. Res. 63, 463–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Roy, A. et al. The cardiopulmonary effects of ambient air pollution and mechanistic pathways: a comparative hierarchical pathway analysis. PLoS ONE 9, e114913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pourazar, J. et al. Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L724–L730 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Lucking, A. J. et al. Diesel exhaust inhalation increases thrombus formation in man. Eur. Heart J. 29, 3043–3051 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Rückerl, R. et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ. Int. 70, 32–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Harrison, N. A., Cooper, E., Voon, V., Miles, K. & Critchley, H. D. Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain Behav. Immun. 31, 189–196 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Huang, W. et al. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing Olympics. Am. J. Respir. Crit. Care Med. 186, 1150–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Krishnan, R. M. et al. A randomized cross-over study of inhalation of diesel exhaust, hematological indices, and endothelial markers in humans. Part. Fibre Toxicol. 10, 7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Montezano, A. C. & Touyz, R. M. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid. Redox Signal. 20, 164–182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Langrish, J. P. et al. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J. Am. Heart Assoc. 2, e004309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gandhi, S. K., Rich, D. Q., Ohman-Strickland, P. A., Kipen, H. M. & Gow, A. Plasma nitrite is an indicator of acute changes in ambient air pollutant concentrations. Inhal. Toxicol. 26, 426–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bind, M. A. et al. Air pollution and gene-specific methylation in the Normative Aging Study: association, effect modification, and mediation analysis. Epigenetics 9, 448–458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Baccarelli, A. et al. Low blood DNA methylation determines higher risk and mortality from ischemic heart disease and stroke among elderly individuals. Circulation 119, E281 (2009).

    Article  Google Scholar 

  128. Baccarelli, A., Rienstra, M. & Benjamin, E. J. Cardiovascular epigenetics basic concepts and results from animal and human studies. Circ. Cardiovasc. Genet. 3, 567–573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chiuve, S. E. et al. Adherence to a low-risk, healthy lifestyle and risk of sudden cardiac death among women. JAMA 306, 62–69 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang, G. H. et al. Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 381, 1987–2015 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Weichenthal, S. et al. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor Air 23, 175–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Allen, R. W. et al. An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. Am. J. Respir. Crit. Care Med. 183, 1222–1230 (2011).

    Article  PubMed  Google Scholar 

  133. Langrish, J. P. et al. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part. Fibre Toxicol. 6, 8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Pope, C. A. 3rd, Ezzati, M. & Dockery, D. W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 360, 376–386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rich, D. Q. et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 307, 2068–2078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kipen, H. et al. Measurement of inflammation and oxidative stress following drastic changes in air pollution during the Beijing Olympics: a panel study approach. Ann. NY Acad. Sci. 1203, 160–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Pope, C. A. 3rd et al. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120, 941–948 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Correia, A. W. et al. Effect of air pollution control on life expectancy in the United States: an analysis of 545 U. S. counties for the period from 2000 to 2007. Epidemiology 24, 23–31 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Moon, K., Guallar, E. & Navas-Acien, A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr. Atheroscler. Rep. 14, 542–555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tellez-Plaza, M., Jones, M. R., Dominguez-Lucas, A., Guallar, E. & Navas-Acien, A. Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr. Atheroscler. Rep. 15, 356 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Navas-Acien, A., Guallar, E., Silbergeld, E. K. & Rothenberg, S. J. Lead exposure and cardiovascular disease—a systematic review. Environ. Health Perspect. 115, 472–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Prozialeck, W. C. et al. The vascular system as a target of metal toxicity. Toxicol. Sci. 102, 207–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Tyrrell, J. et al. High urinary tungsten concentration is associated with stroke in the National Health and Nutrition Examination Survey 1999–2010. PLoS ONE 8, e77546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Navas-Acien, A. et al. Metals in urine and peripheral arterial disease. Environ. Health Perspect. 113, 164–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Agency for Toxic Substances & Disease Registry (ATSDR). Prority List of Hazardous Substances [online], (2013).

  146. Naujokas, M. F. et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ. Health Perspect. 121, 295–302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schmidt, C. W. Low-dose arsenic: in search of a risk threshold. Environ. Health Perspect. 122, A130–A134 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. Navas-Acien, A. & Nachman, K. E. Public health responses to arsenic in rice and other foods. JAMA Intern. Med. 173, 1395–1396 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Schmidt, C. W. In search of “just right”: the challenge of regulating arsenic in rice. Environ. Health Perspect. 123, A16–A19 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Davis, M. A. et al. Rice consumption and urinary arsenic concentrations in U. S. children. Environ. Health Perspect. 120, 1418–1424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maull, E. A. et al. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environ. Health Perspect. 120, 1658–1670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fowler, B. A., Chou, C.-H. S., Jones, R. L. & Chen, C. J. in Handbook on the Toxicology of Metals 3rd edn Ch. 19 (eds Nordberg, G. F., Fowler, B. A., Nordberg, M. & Friberg, L.) 367–406 (Elsevier, 2007).

    Book  Google Scholar 

  153. Navas-Acien, A., Francesconi, K. A., Silbergeld, E. K. & Guallar, E. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ. Res. 111, 110–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. United States Environmental Protection Agency (EPA). SBAR Panel #14—national primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring [online], (2001).

  155. Thomas, D. J., Styblo, M. & Lin, S. The cellular metabolism and systemic toxicity of arsenic. Toxicol. Appl. Pharmacol. 176, 127–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 181–182, 211–217 (2002).

    Article  PubMed  Google Scholar 

  157. Steinmaus, C. et al. Arsenic methylation and bladder cancer risk in case–control studies in Argentina and the United States. J. Occup. Environ. Med. 48, 478–488 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Hsueh, Y. M. et al. Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol. Biomarkers Prev. 6, 589–596 (1997).

    CAS  PubMed  Google Scholar 

  159. Chen, Y. et al. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 342, d2431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wu, M. M. et al. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol. Appl. Pharmacol. 216, 168–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Kuo, C. C. et al. Arsenic exposure, arsenic metabolism, and incident diabetes in the strong heart study. Diabetes Care 38, 620–627 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gribble, M. O. et al. Body composition and arsenic metabolism: a cross-sectional analysis in the Strong Heart Study. Environ. Health 12, 107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stýblo, M., Drobná, Z., Jaspers, I., Lin, S. & Thomas, D. J. The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ. Health Perspect. 110 (Suppl. 5), 767–771 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Agency for Toxic Substances & Disease Registry (ATSDR). Toxicological Profile for Arsenic [online] (2007).

  165. Hall, M. N. & Gamble, M. V. Nutritional manipulation of one-carbon metabolism: effects on arsenic methylation and toxicity. J. Toxicol. 2012, 595307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chiou, H. Y. et al. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke 28, 1717–1723 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. Tseng, C. H. et al. Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol. Lett. 137, 15–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Yuan, Y. et al. Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. Am. J. Epidemiol. 166, 1381–1391 (2007).

    Article  PubMed  Google Scholar 

  169. Hertz-Picciotto, I., Arrighi, H. M. & Hu, S. W. Does arsenic exposure increase the risk for circulatory disease? Am. J. Epidemiol. 151, 174–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Navas-Acien, A. et al. Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am. J. Epidemiol. 162, 1037–1049 (2005).

    Article  PubMed  Google Scholar 

  171. Moon, K. A. et al. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann. Intern. Med. 159, 649–659 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. James, K. A. et al. Association between lifetime exposure to inorganic arsenic in drinking water and coronary heart disease in Colorado residents. Environ. Health Perspect. 123, 128–134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sidhu, M. S. et al. Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 331, 78–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Tsuji, J. S., Perez, V., Garry, M. R. & Alexander, D. D. Association of low-level arsenic exposure in drinking water with cardiovascular disease: a systematic review and risk assessment. Toxicology 323, 78–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Abhyankar, L. N., Jones, M. R., Guallar, E. & Navas-Acien, A. Arsenic Exposure and hypertension: a systematic review. Environ. Health Perspect. 120, 494–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Wu, F., Molinaro, P. & Chen, Y. Arsenic exposure and subclinical endpoints of cardiovascular diseases. Curr. Environ. Health Rep. 1, 148–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang, C. H. et al. Arsenic-induced QT dispersion is associated with atherosclerotic diseases and predicts long-term cardiovascular mortality in subjects with previous exposure to arsenic: a 17-year follow-up study. Cardiovasc. Toxicol. 10, 17–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Mordukhovich, I. et al. Association between low-level environmental arsenic exposure and QT interval duration in a general population study. Am. J. Epidemiol. 170, 739–746 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kuo, C. C., Moon, K., Thayer, K. A. & Navas-Acien, A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr. Diab. Rep. 13, 831–849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zheng, L. et al. Arsenic and chronic kidney disease: a systematic review. Curr. Environ. Health Rep. 1, 192–207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zheng, L. Y. et al. Urine arsenic and prevalent albuminuria: evidence from a population-based study. Am. J. Kidney Dis. 61, 385–394 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Bunderson, M. et al. Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol. Appl. Pharmacol. 201, 32–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Srivastava, S. et al. Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE−/− mice. Toxicol. Appl. Pharmacol. 241, 90–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen, Y. et al. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am. J. Epidemiol. 178, 372–381 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Wang, Y. H. et al. Effects of arsenic exposure and genetic polymorphisms of p53, glutathione S-transferase M1, T1, and P1 on the risk of carotid atherosclerosis in Taiwan. Atherosclerosis 192, 305–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Liu, S. et al. Arsenic induces diabetic effects through β-cell dysfunction and increased gluconeogenesis in mice. Sci. Rep. 4, 6894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Paul, D. S., Walton, F. S., Saunders, R. J. & Stýblo, M. Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet. Environ. Health Perspect. 119, 1104–1109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Barchowsky, A., Dudek, E. J., Treadwell, M. D. & Wetterhahn, K. E. Arsenic induces oxidant stress and NF-κB activation in cultured aortic endothelial cells. Free Radic. Biol. Med. 21, 783–790 (1996).

    Article  CAS  PubMed  Google Scholar 

  189. States, J. C., Srivastava, S., Chen, Y. & Barchowsky, A. Arsenic and cardiovascular disease. Toxicol. Sci. 107, 312–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Kumagai, Y. & Pi, J. Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. Toxicol. Appl. Pharmacol. 198, 450–457 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Chen, Y. et al. Arsenic exposure from drinking water and QT-interval prolongation: results from the Health Effects of Arsenic Longitudinal Study. Environ. Health Perspect. 121, 427–432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mumford, J. L. et al. Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environ. Health Perspect. 115, 690–694 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Koestler, D. C., Avissar-Whiting, M., Houseman, E. A., Karagas, M. R. & Marsit, C. J. Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ. Health Perspect. 121, 971–977 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Reichard, J. F., Schnekenburger, M. & Puga, A. Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem. Biophys. Res. Commun. 352, 188–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Bailey, K. A. & Fry, R. C. Arsenic-associated changes to the epigenome: what are the functional consequences? Curr. Environ. Health Rep. 1, 22–34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  196. States, J. C. et al. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis. PLoS ONE 7, e38713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Martin, E. et al. Metabolomic characteristics of arsenic-associated diabetes in a prospective cohort in Chihuahua, Mexico. Toxicol. Sci. 144, 338–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Agency for Toxic Substances & Disease Registry (ATSDR). Toxicological Profile for Cadmium [online], (2012).

  199. Nordberg, G. F., Nogawa, K., Nordberg, M. & Friberg, L. in Handbook on the Toxicology of Metals 3rd edn Ch. 23 (eds Nordberg, G. F., Fowler, B. A., Nordberg, M. & Friberg, L.) 445–486 (Elsevier, 2007).

    Book  Google Scholar 

  200. Fransson, M. N., Barregard, L., Sallsten, G., Akerstrom, M. & Johanson, G. Physiologically-based toxicokinetic model for cadmium using Markov-chain Monte Carlo analysis of concentrations in blood, urine, and kidney cortex from living kidney donors. Toxicol. Sci. 141, 365–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tellez-Plaza, M. et al. Cadmium exposure and all-cause and cardiovascular mortality in the U. S. general population. Environ. Health Perspect. 120, 1017–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Peters, J. L., Perlstein, T. S., Perry, M. J., McNeely, E. & Weuve, J. Cadmium exposure in association with history of stroke and heart failure. Environ. Res. 110, 199–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Menke, A., Muntner, P., Silbergeld, E. K., Platz, E. A. & Guallar, E. Cadmium levels in urine and mortality among U.S. adults. Environ. Health Perspect. 117, 190–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Tellez-Plaza, M. et al. Cadmium exposure and incident cardiovascular disease. Epidemiology 24, 421–429 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Messner, B. et al. Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler. Thromb. Vasc. Biol. 29, 1392–1398 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Fagerberg, B. et al. Cadmium exposure and atherosclerotic carotid plaques—results from the Malmö diet and Cancer study. Environ. Res. 136, 67–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Tellez-Plaza, M., Navas-Acien, A., Crainiceanu, C. M., Sharrett, A. R. & Guallar, E. Cadmium and peripheral arterial disease: gender differences in the 1999–2004 US National Health and Nutrition Examination Survey. Am. J. Epidemiol. 172, 671–681 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Myong, J. P., Kim, H. R., Jang, T. W., Lee, H. E. & Koo, J. W. Association between blood cadmium levels and 10-year coronary heart disease risk in the general Korean population: the Korean National Health and Nutrition Examination Survey 2008–2010. PLoS ONE 9, e111909 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tellez-Plaza, M., Navas-Acien, A., Crainiceanu, C. M. & Guallar, E. Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ. Health Perspect. 116, 51–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Chung, S. et al. Blood lead and cadmium levels and renal function in Korean adults. Clin. Exp. Nephrol. 18, 726–734 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Messner, B. & Bernhard, D. Cadmium and cardiovascular diseases: cell biology, pathophysiology, and epidemiological relevance. Biometals 23, 811–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Cuypers, A. et al. Cadmium stress: an oxidative challenge. Biometals 23, 927–940 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Choong, G., Liu, Y. & Templeton, D. M. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem. Biol. Interact. 211, 54–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Woods, J. M. et al. Direct antiangiogenic actions of cadmium on human vascular endothelial cells. Toxicol. In Vitro 22, 643–651 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Almenara, C. C. et al. Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS ONE 8, e68418 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Donpunha, W. et al. Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 24, 105–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Peters, J. L., Fabian, M. P. & Levy, J. I. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES. Environ. Res. 132, 93–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Hellström, L. et al. Cadmium exposure and end-stage renal disease. Am. J. Kidney Dis. 38, 1001–1008 (2001).

    Article  PubMed  Google Scholar 

  219. Navas-Acien, A. et al. Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am. J. Epidemiol. 170, 1156–1164 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Weaver, V. M. et al. Associations of low-level urine cadmium with kidney function in lead workers. Occup. Environ. Med. 68, 250–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. Akesson, A. et al. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ. Health Perspect. 113, 1627–1631 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Skerfving, S. & Bergdahl, I. A. in Handbook on the Toxicology of Metals 3rd edn Ch. 31 (eds Nordberg, G. F., Fowler, B. A., Nordberg, M. & Friberg, L.) 599–643 (Elsevier, 2007).

    Book  Google Scholar 

  223. Flegal, A. R. & Smith, D. R. Lead levels in preindustrial humans. N. Engl. J. Med. 326, 1293–1294 (1992).

    CAS  PubMed  Google Scholar 

  224. Apostolou, A. et al. Secondhand tobacco smoke: a source of lead exposure in US children and adolescents. Am. J. Public Health 102, 714–722 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Hu, H., Shih, R., Rothenberg, S. & Schwartz, B. S. The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ. Health Perspect. 115, 455–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  226. Menke, A., Muntner, P., Batuman, V., Silbergeld, E. K. & Guallar, E. Blood lead below 0.48 μmol/L (10 μg/dL) and mortality among US adults. Circulation 114, 1388–1394 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Weisskopf, M. G. et al. A prospective study of bone lead concentration and death from all causes, cardiovascular diseases, and cancer in the Department of Veterans Affairs Normative Aging Study. Circulation 120, 1056–1064 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Jain, N. B. et al. Lead levels and ischemic heart disease in a prospective study of middle-aged and elderly men: the VA Normative Aging Study. Environ. Health Perspect. 115, 871–875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Muntner, P., Menke, A., DeSalvo, K. B., Rabito, F. A. & Batuman, V. Continued decline in blood lead levels among adults in the United States: the National Health and Nutrition Examination Surveys. Arch. Intern. Med. 165, 2155–2161 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Navas-Acien, A. et al. Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109, 3196–3201 (2004).

    Article  CAS  PubMed  Google Scholar 

  231. Vaziri, N. D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 295, H454–H465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kern, M. & Audesirk, G. Stimulatory and inhibitory effects of inorganic lead on calcineurin. Toxicology 150, 171–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  233. Zhang, L. F., Peng, S. Q. & Wang, S. Decreased aortic contractile reaction to 5-hydroxytryptamine in rats with long-term hypertension induced by lead (Pb(2+)) exposure. Toxicol. Lett. 186, 78–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  234. Lin, J. L., Lin-Tan, D. T., Hsu, K. H. & Yu, C. C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med. 348, 277–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  235. Hanna, C. W. et al. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum. Reprod. 27, 1401–1410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Tajuddin, S. M. et al. Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ. Health Perspect. 121, 650–656 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Wright, R. O. et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ. Health Perspect. 118, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Li, C., Yang, X., Xu, M., Zhang, J. & Sun, N. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin. Toxicol. (Phila.) 51, 225–229 (2013).

    Article  CAS  Google Scholar 

  239. Bollati, V. et al. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118, 763–768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Pirkle, J. L. et al. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES). JAMA 272, 284–291 (1994).

    Article  CAS  PubMed  Google Scholar 

  241. Tellez-Plaza, M. et al. Reduction in cadmium exposure in the United States population, 1988–2008: the contribution of declining smoking rates. Environ. Health Perspect. 120, 204–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  242. Lamas, G. A. et al. Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial. JAMA 309, 1241–1250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data, discussions of content, and writing the article, and to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Joel D. Kaufman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cosselman, K., Navas-Acien, A. & Kaufman, J. Environmental factors in cardiovascular disease. Nat Rev Cardiol 12, 627–642 (2015). https://doi.org/10.1038/nrcardio.2015.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing