Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs and atrial fibrillation: mechanisms and translational potential

Key Points

  • MicroRNAs are gene regulators with important pathophysiological roles in various cardiac conditions, including in atrial fibrillation (AF)

  • Patients with AF have altered microRNA expression profiles in atrial tissue and in blood

  • Correction of specific microRNA dysregulation can suppress AF in animal studies

  • Several in vivo microRNA interference approaches are under development that might be used for microRNA-targeted therapies in patients with AF in the future

  • Although microRNAs show promise as biomarkers and therapeutic targets in AF, considerable research is needed before their full potential can be realized

Abstract

Atrial fibrillation (AF), the most common sustained arrhythmia in clinical practice, is an important contributor to cardiac morbidity and mortality. Pharmacological approaches currently available to treat patients with AF lack sufficient efficacy and are associated with potential adverse effects. Even though ablation is generally more effective than pharmacotherapy, this invasive procedure has considerable potential complications and is limited by long-term recurrences. Novel therapies based on the underlying molecular mechanisms of AF can provide useful alternatives to current treatments. MicroRNAs (miRNAs), endogenous short RNA sequences that regulate gene expression, have been implicated in the control of AF, providing novel insights into the molecular basis of the pathogenesis of AF and suggesting miRNA targeting as a potential approach for the management of this common arrhythmia. In this Review, we provide a comprehensive analysis of the current experimental evidence supporting miRNAs as important factors in AF and discuss their therapeutic implications. We first provide background information on the pathophysiology of AF and the biological determinants of miRNA synthesis and action, followed by experimental evidence for miRNA-mediated regulation of AF, and finally provide a comprehensive overview of miRNAs as potential novel therapeutic targets for AF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the pathophysiological mechanisms underlying AF.
Figure 2: Biogenesis and actions of miRNA.
Figure 3: miRNAs in AF-associated electrical remodelling.
Figure 4: miRNAs in AF-associated structural remodelling.
Figure 5: Strategies for miRNA-based therapies: in vivo approaches to modulate the expression or activity of miRNAs.

Similar content being viewed by others

References

  1. Ahmad, Y., Lip, G. Y. & Lane, D. A. Recent developments in understanding epidemiology and risk determinants of atrial fibrillation as a cause of stroke. Can. J. Cardiol. 29 (Suppl. 7), S4–S13 (2013).

    Article  PubMed  Google Scholar 

  2. Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Naccarelli, G. V., Varker, H., Lin, J. & Schulman, K. L. Increasing prevalence of atrial fibrillation and flutter in the United States. Am. J. Cardiol. 104, 1534–1539 (2009).

    Article  PubMed  Google Scholar 

  4. Murphy, N. F. et al. A national survey of the prevalence, incidence, primary care burden and treatment of atrial fibrillation in Scotland. Heart 93, 606–612 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Woods, C. E. & Olgin, J. Atrial fibrillation therapy now and in the future: drugs, biologicals, and ablation. Circ. Res. 114, 1532–1546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nattel, S. & Opie, L. H. Controversies in atrial fibrillation. Lancet 367, 262–272 (2006).

    Article  PubMed  Google Scholar 

  8. Dobrev, D., Carlsson, L. & Nattel, S. Novel molecular targets for atrial fibrillation therapy. Nat. Rev. Drug Discov. 11, 275–291 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Iwasaki, Y. K., Nishida, K., Kato, T. & Nattel, S. Atrial fibrillation pathophysiology: Implications for management. Circulation 124, 2264–2274 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Nattel, S., Burstein, B. & Dobrev, D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ. Arrhythm. Electrophysiol. 1, 62–73 (2008).

    Article  PubMed  Google Scholar 

  11. Wakili, R., Voigt, N., Kaab, S., Dobrev, D. & Nattel, S. Recent advances in the molecular pathophysiology of atrial fibrillation. J. Clin. Invest. 121, 2955–2968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schotten, U., Verheule, S., Kirchhof, P. & Goette, A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91, 265–325 (2011).

    Article  PubMed  Google Scholar 

  13. Nattel, S. & Harada, M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J. Am. Coll. Cardiol. 63, 2335–2345 (2014).

    Article  PubMed  Google Scholar 

  14. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Yue, L. et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ. Res. 81, 512–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Gaborit, N. et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 112, 471–481 (2005).

    Article  PubMed  Google Scholar 

  17. Makary, S. et al. Differential protein kinase C isoform regulation and increased constitutive activity of acetylcholine-regulated potassium channels in atrial remodeling. Circ. Res. 109, 1031–1043 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Brundel, B. J. et al. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103, 684–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Igarashi, T. et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation 125, 216–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Bikou. O. et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc. Res. 92, 218–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Parkash, R. et al. The association of left atrial size and occurrence of atrial fibrillation: a prospective cohort study from the Canadian Registry of Atrial Fibrillation. Am. Heart J. 148, 649–654 (2004).

    Article  PubMed  Google Scholar 

  22. Zou, R., Kneller, J., Leon, L. J. & Nattel, S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am. J. Physiol. Heart Circ. Physiol. 289, H1002–H1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Frustaci, A. et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96, 1180–1184 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Kalman, J. M., Kumar, S. & Sanders, P. Markers of collagen synthesis, atrial fibrosis, and the mechanisms underlying atrial fibrillation. J. Am. Coll. Cardiol. 60, 1807–1808 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Sinno, H. et al. Atrial ischemia promotes atrial fibrillation in dogs. Circulation 107, 1930–1936 (2003).

    Article  PubMed  Google Scholar 

  26. Anne, W. et al. Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation. Cardiovasc. Res. 67, 655–666 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Burstein, B., Qi, X. Y., Yeh, Y. H., Calderone, A. & Nattel, S. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc. Res. 76, 442–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Burstein, B., Libby, E., Calderone, A. & Nattel, S. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117, 1630–1641 (2008).

    Article  PubMed  Google Scholar 

  29. Rahmutula, D. et al. Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-β1. Cardiovasc. Res. 99, 769–779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, P. S., Chen, L. S., Fishbein, M. C., Lin, S. F. & Nattel, S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ. Res. 114, 1500–1515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Ambros, V. MicroRNAs: tiny regulators with great potential. Cell 107, 823–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Rooij, E. & Olson, E. N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 11, 860–872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Rooij, E., Purcell, A. L. & Levin, A. A. Developing microRNA therapeutics. Circ. Res. 110, 496–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12, 846–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17, 118–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Liang, Y., Ridzon, D., Wong, L. & Chen, C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8, 166 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Luo, X., Zhang, H., Xiao, J. & Wang, Z. Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications. Cell. Physiol. Biochem. 25, 571–586 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Small, E. M., Frost, R. J. & Olson, E. N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022–1032 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lu, Y. et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122, 2378–2387 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Xiao, J. et al. MicroRNA expression signature in atrial fibrillation with mitral stenosis. Physiol. Genomics 43, 655–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Cooley, N. et al. Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol. Genomics 44, 211–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Nishi, H. et al. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery. PLoS ONE 8, e73397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, H. et al. Atrial fibrillation alters the microRNA expression profiles of the left atria of patients with mitral stenosis. BMC Cardiovasc. Disord. 14, 10 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gilad, S. et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 3, e3148 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu, Z. et al. The expression levels of plasma microRNAs in atrial fibrillation patients. PLoS ONE 7, e44906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goren, Y. et al. Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am. J. Cardiol. 113, 976–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Dawson, K. et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127, 1466–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. McManus, D. D. et al. Relations between circulating microRNAs and atrial fibrillation: data from the Framingham Offspring Study. Heart Rhythm 11, 663–669 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Girmatsion, Z. et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 6, 1802–1809 (2009).

    Article  PubMed  Google Scholar 

  57. Chinchilla, A. et al. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ. Cardiovasc. Genet. 4, 269–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Luo, X. et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest. 123, 1939–1951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jia, X. et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS ONE 8, e85639 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zicha, S. et al. Molecular basis of species-specific expression of repolarizing K+ currents in the heart. Am. J. Physiol. Heart Circ. Physiol. 285, H1641–H1649 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Harada, M. et al. MicroRNA regulation and cardiac calcium signaling: role in cardiac disease and therapeutic potential. Circ. Res. 114, 689–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Pandit, S. V. et al. Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys. J. 88, 3806–3821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Callis, T. E. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ling, T. Y. et al. Regulation of the SK3 channel by microRNA-499-potential role in atrial fibrillation. Heart Rhythm 10, 1001–1009 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ellinor, P. T. et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat. Genet. 42, 240–244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Patrick, D. M. et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest. 120, 3912–3916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cardin, S. et al. Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ. Arrhythm. Electrophysiol. 5, 1027–1035 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Adam, O. et al. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res. Cardiol. 107, 278 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Harada, M. et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126, 2051–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duisters, R. F. et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Li, H., Li, S., Yu, B. & Liu, S. Expression of miR-133 and miR-30 in chronic atrial fibrillation in canines. Mol. Med. Rep. 5, 1457–1460 (2012).

    CAS  PubMed  Google Scholar 

  74. Shan, H. et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res. 83, 465–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Wahlquist, C. et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508, 531–535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karakikes, I. et al. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J. Am. Heart Assoc. 2, e000078 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Weiler, J., Hunziker, J. & Hall, J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 13, 496–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Lennox, K. A. & Behlke, M. A. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 18, 1111–1120 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  PubMed  CAS  Google Scholar 

  80. Montgomery, R. L. et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124, 1537–1547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hullinger, T. G. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    CAS  PubMed  Google Scholar 

  84. Szabo, G. & Bala, S. MicroRNAs in liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 542–552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sayed, D. et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol. Biol. Cell 19, 3272–3282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Choi, W. Y., Giraldez, A. J. & Schier, A. F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol. Biol. 676, 43–49 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Hata, A. Functions of microRNAs in cardiovascular biology and disease. Annu. Rev. Physiol. 75, 69–93 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Rao, P. K. et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105, 585–594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu, Y. et al. Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs. Proc. Natl Acad. Sci. USA 109, 19864–19869 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank France Thériault of the Montreal Heart Institute, Montreal, QC, Canada for expert secretarial assistance, and the Canadian Institutes of Health Research and Heart and Stroke Foundation of Canada for funding.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and S.N. researched data and wrote the manuscript; all the authors contributed substantially to discussion of content, reviewing, and editing of the manuscript before submission.

Corresponding author

Correspondence to Stanley Nattel.

Ethics declarations

Competing interests

S.N. is listed as inventor on a patent pending belonging to Montreal Heart Institute/Université de Montréal, entitled “MiR21 as a target in prevention of atrial fibrillation”. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Yang, B. & Nattel, S. MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol 12, 80–90 (2015). https://doi.org/10.1038/nrcardio.2014.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing