Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease

A Publisher Correction to this article was published on 30 May 2022

This article has been updated

Abstract

Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA–target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.

Key points

  • MicroRNAs (miRNAs) are non-coding RNAs that mediate post-transcriptional repression of gene expression by pairing and loading target transcripts in RNA-induced silencing complexes, profoundly regulating cardiovascular development, physiology and disease progression.

  • The canonical biogenesis of miRNAs, involving transcription of canonical miRNA genes and two cleavage steps by the microprocessor complex and Dicer, can be bypassed by certain miRNAs that have relevant cardiovascular effects.

  • Non-canonical biogenesis involves alternative sources of precursors, miRNA duplexes with double functional strands for synergistic effects, miRNA isoforms with distinct targeting specificity after ischaemia, or even translation into small peptides.

  • In addition to RNA-induced silencing in the cytoplasm, miRNAs affect gene expression by regulating transcription and the epigenetic status of gene promoters and enhancers in the nucleus, and by targeting mitochondrially encoded transcripts.

  • miRNAs can directly affect protein functions by direct biophysical interactions, ultimately modulating crucial aspects of cardiovascular biology, such as endothelial integrity (miR-126-5p by inhibiting caspase 3) or cardiac action potential (miR-1-3p by binding to Kir2.1).

  • Extracellular miRNAs can mediate intercellular communication by silencing targets or interacting with cellular receptors, such as Toll-like receptors, in recipient cells, and the levels of extracellular miRNAs can be altered in cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atypical biogenesis of miRNAs implicated in cardiovascular diseases.
Fig. 2: Aptamer function of cardiovascular-relevant miRNAs.
Fig. 3: Non-conventional miRNA functions.

Similar content being viewed by others

Change history

References

  1. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Park, M. S. et al. Human Argonaute3 has slicer activity. Nucleic Acids Res. 45, 11867–11877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, W. J. et al. Dicer is required for embryonic angiogenesis during mouse development. J. Biol. Chem. 280, 9330–9335 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. da Costa Martins, P. A. et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 1567–1576 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Hartmann, P. et al. Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat. Commun. 7, 10521 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zahedi, F. et al. Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair. Cell Mol. Life Sci. 74, 359–372 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. La Rocca, G. et al. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. eLife 10, e70948 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Abplanalp, W. T. et al. Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid. Ther. 30, 335–345 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Barwari, T., Joshi, A. & Mayr, M. MicroRNAs in cardiovascular disease. J. Am. Coll. Cardiol. 68, 2577–2584 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Thum, T. & Condorelli, G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ. Res. 116, 751–762 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Peters, L. J. F. et al. Small things matter: relevance of microRNAs in cardiovascular disease. Front. Physiol. 11, 793 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boon, R. A. & Dimmeler, S. MicroRNAs in myocardial infarction. Nat. Rev. Cardiol. 12, 135–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Schober, A., Nazari-Jahantigh, M. & Weber, C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat. Rev. Cardiol. 12, 361–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ender, C. et al. A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zamudio, J. R., Kelly, T. J. & Sharp, P. A. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156, 920–934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribeiro Da Fonseca, B. H., Domingues, D. S. & Paschoal, A. R. mirtronDB: a mirtron knowledge base. Bioinformatics 35, 3873–3874 (2019).

    Article  CAS  Google Scholar 

  26. Bortolamiol-Becet, D. et al. Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase tailor. Mol. Cell 59, 217–228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren, X. P. et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357–2366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, F. et al. miR-320 accelerates chronic heart failure with cardiac fibrosis through activation of the IL6/STAT3 axis. Aging 13, 22516–22527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, H. et al. Knockdown of lncRNA MALAT1 attenuates acute myocardial infarction through miR-320-Pten axis. Biomed. Pharmacother. 106, 738–746 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Tian, Z. Q., Jiang, H. & Lu, Z. B. MiR-320 regulates cardiomyocyte apoptosis induced by ischemia-reperfusion injury by targeting AKIP1. Cell Mol. Biol. Lett. 23, 41 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chen, C. et al. Differentially expressed lnc-NOS2P3-miR-939-5p axis in chronic heart failure inhibits myocardial and endothelial cells apoptosis via iNOS/TNFα pathway. J. Cell Mol. Med. 24, 11381–11396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones, D. et al. Mirtron microRNA-1236 inhibits VEGFR-3 signaling during inflammatory lymphangiogenesis. Arterioscler. Thromb. Vasc. Biol. 32, 633–642 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoda, M. et al. Poly(A)-specific ribonuclease mediates 3′-end trimming of Argonaute2-cleaved precursor microRNAs. Cell Rep. 5, 715–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Patrick, D. M. et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes Dev. 24, 1614–1619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X. et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J. Mol. Cell Cardiol. 49, 841–850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuwabara, Y. et al. MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ. Res. 116, 279–288 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Liang, C. et al. MiR-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. Life Sci. 224, 12–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X. et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc. Res. 94, 379–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, L. J. et al. MicroRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress. Circ. Res. 116, 1157–1169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, L. J., Chuang, L., Huang, Y. H., Chien, S. & Chiu, J. J. MicroRNA-451 protects against atherosclerotic plaque formation by directly targeting Ras-associated protein 5a in vascular smooth muscle cells. FASEB J. 29, 1047.2 (2015).

    Google Scholar 

  42. Hamid, S. M. et al. Inositol-requiring enzyme-1 regulates phosphoinositide signaling lipids and macrophage growth. EMBO Rep. 21, e51462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tufanli, O. et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc. Natl Acad. Sci. USA 114, E1395–E1404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Moreau, P. R. et al. Profiling of primary and mature miRNA expression in atherosclerosis-associated cell types. Arterioscler. Thromb. Vasc. Biol. 41, 2149–2167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T. & Lowenstein, C. J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl Acad. Sci. USA 105, 1516–1521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    Article  PubMed  Google Scholar 

  49. Guo, F. H. et al. Single-cell transcriptome analysis reveals embryonic endothelial heterogeneity at spatiotemporal level and multifunctions of microRNA-126 in mice. Arterioscler. Thromb. Vasc. Biol. 42, 326–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schober, A. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med. 20, 368–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Santovito, D. et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci. Transl Med. 12, eaaz2294 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Guixe-Muntet, S. et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J. Hepatol. 66, 86–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Hsieh, P. N. et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat. Commun. 8, 914 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sangwung, P. et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2, e91700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu, W. et al. Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation 124, 633–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liao, C. C., Ho, M. Y., Liang, S. M. & Liang, C. M. Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P. Autophagy 14, 2065–2082 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schober, A. et al. MicroRNA-21 controls circadian regulation of apoptosis in atherosclerotic lesions. Circulation 144, 1059–1073 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Liang, H. et al. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 44, 2152–2160 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Yuan, J. et al. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol. Biochem. 42, 2207–2219 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, X. L. et al. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J. Cell Mol. Med. 22, 3816–3824 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roy, S. et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82, 21–29 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bang, C. et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136–2146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yan, M. et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc. Res. 105, 340–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Lorenzen, J. M. et al. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur. Heart J. 36, 2184–2196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ohanian, M., Humphreys, D. T., Anderson, E., Preiss, T. & Fatkin, D. A heterozygous variant in the human cardiac miR-133 gene, MIR133A2, alters miRNA duplex processing and strand abundance. BMC Genet. 14, 18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Telonis, A. G., Loher, P., Jing, Y., Londin, E. & Rigoutsos, I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 43, 9158–9175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo, L. & Chen, F. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene 544, 1–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Guo, L. et al. Consistent isomiR expression patterns and 3′ addition events in miRNA gene clusters and families implicate functional and evolutionary relationships. Mol. Biol. Rep. 39, 6699–6706 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tan, G. C. et al. 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 42, 9424–9435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38, e101153 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Fernandez-Valverde, S. L., Taft, R. J. & Mattick, J. S. Dynamic isomiR regulation in Drosophila development. RNA 16, 1881–1888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van der Kwast, R., Woudenberg, T., Quax, P. H. A. & Nossent, A. Y. MicroRNA-411 and Its 5′-isomiR have distinct targets and functions and are differentially regulated in the vasculature under ischemia. Mol. Ther. 28, 157–170 (2020).

    Article  PubMed  CAS  Google Scholar 

  76. Guduric-Fuchs, J. et al. Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells. J. Cell Biochem. 113, 2098–2111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Newman, M. A., Mani, V. & Hammond, S. M. Deep sequencing of microRNA precursors reveals extensive 3′ end modification. RNA 17, 1795–1803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Voellenkle, C. et al. Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA 18, 472–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen, J. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stellos, K. et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22, 1140–1150 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Lauressergues, D. et al. Primary transcripts of microRNAs encode regulatory peptides. Nature 520, 90–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Niu, L. et al. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci. Adv. 6, eaaz2059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Prel, A., Dozier, C., Combier, J. P., Plaza, S. & Besson, A. Evidence that regulation of Pri-miRNA/miRNA expression is not a general rule of miPEPs function in humans. Int. J. Mol. Sci. 22, 3432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Razooky, B. S., Obermayer, B., O’May, J. B. & Tarakhovsky, A. Viral infection identifies micropeptides differentially regulated in smORF-containing lncRNAs. Genes 8, 206 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  85. Makarewich, C. A. & Olson, E. N. Mining for micropeptides. Trends Cell Biol. 27, 685–696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brunet, M. A. et al. OpenProt 2021: deeper functional annotation of the coding potential of eukaryotic genomes. Nucleic Acids Res. 49, D380–D388 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article  PubMed  CAS  Google Scholar 

  88. Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kang, M. et al. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol. Cancer 19, 143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yan, Y. et al. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol. Ther. 29, 2253–2267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chamorro-Jorganes, A. et al. METTL3 regulates angiogenesis by modulating let-7e-5p and miRNA-18a-5p expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 41, e325–e337 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Alarcon, C. R. et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alarcon, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Seok, H. et al. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature 584, 279–285 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Paul, D. et al. A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci. Rep. 7, 2466 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. van der Kwast, R. et al. Adenosine-to-inosine editing of vasoactive micrornas alters their targetome and function in ischemia. Mol. Ther. Nucleic Acids 21, 932–953 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van der Kwast, R. et al. Adenosine-to-inosine editing of microRNA-487b alters target gene selection after ischemia and promotes neovascularization. Circ. Res. 122, 444–456 (2018).

    Article  PubMed  CAS  Google Scholar 

  100. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. La Rocca, G. et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc. Natl Acad. Sci. USA 112, 767–772 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Hock, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8, 1052–1060 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Olejniczak, S. H., La Rocca, G., Gruber, J. J. & Thompson, C. B. Long-lived microRNA-Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses. Proc. Natl Acad. Sci. USA 110, 157–162 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Androsavich, J. R., Chau, B. N., Bhat, B., Linsley, P. S. & Walter, N. G. Disease-linked microRNA-21 exhibits drastically reduced mRNA binding and silencing activity in healthy mouse liver. RNA 18, 1510–1526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, K. et al. A novel class of microRNA-recognition elements that function only within open reading frames. Nat. Struct. Mol. Biol. 25, 1019–1027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sheu-Gruttadauria, J. & MacRae, I. J. Phase transitions in the assembly and function of human miRISC. Cell 173, 946–957 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burroughs, A. M. et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 8, 158–177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weinmann, L. et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136, 496–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Flores, O., Kennedy, E. M., Skalsky, R. L. & Cullen, B. R. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res. 42, 4629–4639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Janas, M. M. et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA 18, 2041–2055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kundu, P., Fabian, M. R., Sonenberg, N., Bhattacharyya, S. N. & Filipowicz, W. HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res. 40, 5088–5100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mukherjee, K. et al. Reversible HuR-microRNA binding controls extracellular export of miR-122 and augments stress response. EMBO Rep. 17, 1184–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Poria, D. K., Guha, A., Nandi, I. & Ray, P. S. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4. Oncogene 35, 1703–1715 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Liu, S. et al. HuR (human antigen R) regulates the contraction of vascular smooth muscle and maintains blood pressure. Arterioscler. Thromb. Vasc. Biol. 40, 943–957 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Green, L. C. et al. Human antigen R as a therapeutic target in pathological cardiac hypertrophy. JCI Insight 4, e121541 (2019).

    Article  PubMed Central  Google Scholar 

  119. Hu, H. et al. HuR regulates phospholamban expression in isoproterenol-induced cardiac remodelling. Cardiovasc. Res. 116, 944–955 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Santangelo, L. et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 17, 799–808 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Eiring, A. M. et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140, 652–665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Belter, A. et al. Mature miRNAs form secondary structure, which suggests their function beyond RISC. PLoS ONE 9, e113848 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yang, D. et al. MicroRNA biophysically modulates cardiac action potential by direct binding to ion channel. Circulation 143, 1597–1613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Vion, A. C. et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc. Natl Acad. Sci. USA 114, E8675–E8684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Pegan, S. et al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat. Neurosci. 8, 279–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Hasegawa, K. et al. A novel KCNQ1 missense mutation identified in a patient with juvenile-onset atrial fibrillation causes constitutively open IKs channels. Heart Rhythm 11, 67–75 (2014).

    Article  PubMed  Google Scholar 

  130. Hattori, T. et al. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents. Cardiovasc. Res. 93, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Davis, E. et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol. 15, 743–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, J. et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res. 112, 1557–1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chamorro-Jorganes, A. et al. VEGF-induced expression of miR-17-92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ. Res. 118, 38–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Doebele, C. et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115, 4944–4950 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Khraiwesh, B. et al. Transcriptional control of gene expression by microRNAs. Cell 140, 111–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Mathiyalagan, P. et al. The primary microRNA-208b interacts with polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res. 42, 790–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Kim, D. H., Saetrom, P., Snove, O. Jr. & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16230–16235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Singh, I. et al. MiCEE is a ncRNA-protein complex that mediates epigenetic silencing and nucleolar organization. Nat. Genet. 50, 990–1001 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Khan, A. W. et al. MeCP2 interacts with chromosomal microRNAs in brain. Epigenetics 12, 1028–1037 (2017).

    Article  PubMed  Google Scholar 

  144. Khan, A. W. et al. NET silencing by let-7i in postural tachycardia syndrome. JCI Insight 2, e90183 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Farina, F. M. et al. miR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ. Res. 126, e120–e135 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Li, H. et al. Identification of ncRNA-mediated functions of nucleus-localized miR-320 in cardiomyocytes. Mol. Ther. Nucleic Acids 19, 132–143 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Li, H. et al. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ. Res. 125, 1106–1120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fan, J. et al. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. Sci. China Life Sci. 63, 724–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Di Mauro, V., Crasto, S., Colombo, F. S., Di Pasquale, E. & Catalucci, D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci. Rep. 9, 9320 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Zhang, Y. et al. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA 20, 1878–1889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Huang, V. et al. Ago1 Interacts with RNA polymerase II and binds to the promoters of actively transcribed genes in human cancer cells. PLoS Genet. 9, e1003821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Guo, H. et al. Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ. 28, 320–336 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Xiao, M. et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 14, 1326–1334 (2017).

    Article  PubMed  Google Scholar 

  154. Suzuki, H. I., Young, R. A. & Sharp, P. A. Super-enhancer-mediated RNA processing revealed by integrative MicroRNA network analysis. Cell 168, 1000–1014.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jie, M. et al. Subcellular localization of miRNAs and implications in cellular homeostasis. Genes 12, 856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Elguindy, M. M. & Mendell, J. T. NORAD-induced Pumilio phase separation is required for genome stability. Nature 595, 303–308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Robb, G. B., Brown, K. M., Khurana, J. & Rana, T. M. Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 12, 133–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Nishi, K., Nishi, A., Nagasawa, T. & Ui-Tei, K. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19, 17–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gagnon, K. T., Li, L., Chu, Y., Janowski, B. A. & Corey, D. R. RNAi factors are present and active in human cell nuclei. Cell Rep. 6, 211–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pitchiaya, S., Heinicke, L. A., Park, J. I., Cameron, E. L. & Walter, N. G. Resolving subcellular miRNA trafficking and turnover at single-molecule resolution. Cell Rep. 19, 630–642 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ohrt, T. et al. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 36, 6439–6449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sarshad, A. A. et al. Argonaute-miRNA complexes silence target mRNAs in the nucleus of mammalian stem cells. Mol. Cell 71, 1040–1050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cremer, S. et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation 139, 1320–1334 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Leucci, E. et al. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 3, 2535 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wang, D. et al. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res. 46, 2012–2029 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Tang, R. et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 22, 504–515 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Ro, S. et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 23, 759–774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, X. et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607–619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Das, S. et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res. 110, 1596–1603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Das, S. et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS ONE 9, e96820 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Li, H. et al. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation 134, 734–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li, H. et al. The different roles of miRNA-92a-2-5p and let-7b-5p in mitochondrial translation in db/db Mice. Mol. Ther. Nucleic Acids 17, 424–435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jagannathan, R. et al. Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart. Circ. Cardiovasc. Genet. 8, 785–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shepherd, D. L. et al. Exploring the mitochondrial microRNA import pathway through polynucleotide phosphorylase (PNPase). J. Mol. Cell Cardiol. 110, 15–25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Santovito, D. et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J. Clin. Endocrinol. Metab. 99, E1681–E1685 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. D’Alessandra, Y. et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 31, 2765–2773 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Kaur, A. et al. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc. Res. 116, 1113–1124 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Sahoo, S. et al. Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases: roadmap to the clinic. Circulation 143, 1426–1449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kesidou, D. et al. Extracellular vesicle miRNAs in the promotion of cardiac neovascularisation. Front. Physiol. 11, 579892 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Mori, M. A., Ludwig, R. G., Garcia-Martin, R., Brandao, B. B. & Kahn, C. R. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 30, 656–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Santovito, D. & Weber, C. Zooming in on microRNAs for refining cardiovascular risk prediction in secondary prevention. Eur. Heart J. 38, 524–528 (2017).

    PubMed  Google Scholar 

  186. Poller, W. et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur. Heart J. 39, 2704–2716 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Jaen, R. I. et al. Innate immune receptors, key actors in cardiovascular diseases. JACC Basic Transl Sci. 5, 735–749 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lehmann, S. M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15, 827–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Feng, Y. et al. Extracellular microRNAs induce potent innate immune responses via TLR7/MyD88-dependent mechanisms. J. Immunol. 199, 2106–2117 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Pluta, L., Yousefi, B., Damania, B. & Khan, A. A. Endosomal TLR-8 senses microRNA-1294 resulting in the production of NFkB dependent cytokines. Front. Immunol. 10, 2860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Park, C. K. et al. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82, 47–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Han, Q. et al. miRNA-711 binds and activates TRPA1 extracellularly to evoke acute and chronic pruritus. Neuron 99, 449–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces regulate atherosclerosis. Nature 605, 152–159 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Villain, G. et al. miR-126-5p promotes retinal endothelial cell survival through SetD5 regulation in neurons. Development 145, dev156232 (2018).

    PubMed  Google Scholar 

  196. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Goedeke, L. et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol. Med. 6, 1133–1141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Goedeke, L. et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol. Cell Biol. 33, 2339–2352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Su, Y. et al. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis. 10, 365 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Urbich, C. et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 119, 1607–1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Xie, W. et al. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS ONE 11, e0157085 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Chinchilla, A. et al. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc. Res. 89, 98–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Tian, C., Hu, G., Gao, L., Hackfort, B. T. & Zucker, I. H. Extracellular vesicular MicroRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. J. Mol. Cell Cardiol. 143, 120–131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chen, B., Yang, Y., Wu, J., Song, J. & Lu, J. microRNA-17-5p downregulation inhibits autophagy and myocardial remodelling after myocardial infarction by targeting STAT3. Autoimmunity 55, 43–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Li, W., Deng, P., Wang, J., Li, Z. & Zhang, H. MiR-17 knockdown promotes vascular smooth muscle cell phenotypic modulation through upregulated interferon regulator factor 9 expression. Am. J. Hypertens. 33, 1119–1126 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Li, S. H. et al. miR-17 targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling. FASEB J. 27, 4254–4265 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Shi, J. et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7, 664–676 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Liu, Z. et al. Serum extracellular vesicles promote proliferation of H9C2 cardiomyocytes by increasing miR-17-3p. Biochem. Biophys. Res. Commun. 499, 441–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Iwasaki, S. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39, 292–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pfaff, J. et al. Structural features of Argonaute-GW182 protein interactions. Proc. Natl Acad. Sci. USA 110, E3770–E3779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wahle, E. & Winkler, G. S. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim. Biophys. Acta 1829, 561–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Braun, J. E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Fabian, M. R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Mathys, H. et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 54, 751–765 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Mugridge, J. S., Ziemniak, M., Jemielity, J. & Gross, J. D. Structural basis of mRNA-cap recognition by Dcp1-Dcp2. Nat. Struct. Mol. Biol. 23, 987–994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kamenska, A. et al. The DDX6-4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Res. 44, 6318–6334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cougot, N., Babajko, S. & Seraphin, B. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31–40 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell Biol. 27, 3970–3981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Leung, A. K., Calabrese, J. M. & Sharp, P. A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl Acad. Sci. USA 103, 18125–18130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sripada, L. et al. hsa-miR-4485 regulates mitochondrial functions and inhibits the tumorigenicity of breast cancer cells. J. Mol. Med. 95, 641–651 (2017).

    Article  CAS  PubMed  Google Scholar 

  223. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, K., Zhang, S., Weber, J., Baxter, D. & Galas, D. J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38, 7248–7259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Lu, P. et al. MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS ONE 12, e0185992 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Deutsche Forschungsgemeinschaft (DFG; nos. 403584255 — TRR 267-A2 and SFB1123-A1/A10 to C.W.) and by the European Research Council (ERC; AdG 692511 to C.W.). C.W. is a Van de Laar professor of atherosclerosis.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the article.

Corresponding authors

Correspondence to Donato Santovito or Christian Weber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Constanza Emanueli, Thomas Thum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

miRbase: http://www.mirbase.org/

mirtronDB: http://mirtrondb.cp.utfpr.edu.br/

OpenProt: https://openprot.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santovito, D., Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 19, 620–638 (2022). https://doi.org/10.1038/s41569-022-00680-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00680-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing