Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multimodality imaging in interventional cardiology

Abstract

'Multimodality' imaging—the side-by-side interpretation of data obtained from various noninvasive imaging techniques, such as echocardiography, radionuclide techniques, multidetector CT (MDCT), and MRI—allows anatomical, morphological, and functional data to be combined, increases diagnostic accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. During the past decade, advances in software and hardware have allowed co-registration of various imaging modalities, resulting in cardiac 'hybrid' or 'fusion' imaging. In this Review, we discuss the roles of both multimodality and hybrid imaging in three broad areas of cardiology—coronary artery disease (CAD), heart failure, and valvular heart disease. In the evaluation of CAD, integration of either single-photon emission computed tomography (SPECT) or PET with CT coronary angiography provides both morphological and functional data in a single procedure. Accordingly, the functional consequences (myocardial hypoperfusion on SPECT or PET) of anatomical pathology (coronary anatomy on MDCT or MRI) can be assessed. Co-registration of PET and MRI data sets to provide cellular and molecular information on plaque composition and stability is now possible. Furthermore, novel imaging modalities have been implemented to guide electrophysiological and transcatheter-based procedures, such as cardiac resynchronization therapy (an established treatment for patients with heart failure), and transcatheter valve repair or replacement procedures.

Key Points

  • Multimodality imaging has a central role in the clinical management of patients with cardiovascular diseases

  • Cardiac hybrid imaging has become feasible and available in various clinical scenarios and has important implications for clinical decision-making

  • For patients with an intermediate likelihood of having coronary artery disease, single-photon emission computed tomography–CT and PET–CT might become first-line imaging tools to detect flow-limiting coronary artery stenosis

  • In electrophysiology, cardiac multimodality imaging has a central role to guide and improve the efficacy of several procedures, such as device implantation for cardiac resynchronization therapy

  • Emerging transcatheter valve implantation or repair procedures demand high-resolution imaging techniques to plan and guide the interventions accurately

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac hybrid imaging of plaque vulnerability.
Figure 2: Evaluation of coronary artery disease with multidetector CT, MRI, and PET.
Figure 3: Cardiac hybrid imaging with 82Rb-PET–CT.
Figure 4: Black-blood MRI of the coronary artery wall.
Figure 5: Clinical algorithm for imaging in patients with suspected or known CAD.
Figure 6: ECG-gated 18F-FDG–PET–CT hybrid imaging in patients with CRT.
Figure 7: Echocardiographic guidance of the transcatheter edge-to-edge mitral-valve repair procedure.
Figure 8: Multimodality imaging and key steps before, during, and after TAVI.

Similar content being viewed by others

References

  1. Roger, V. L. et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123, e18–e209 (2011).

    Article  PubMed  Google Scholar 

  2. Heidenreich, P. A. et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933–944 (2011).

    Article  PubMed  Google Scholar 

  3. Berman, D. S. Fourth annual Mario S. Verani, MD Memorial Lecture: noninvasive imaging in coronary artery disease: changing roles, changing players. J. Nucl. Cardiol. 13, 457–473 (2006).

    Article  PubMed  Google Scholar 

  4. Klocke, F. J. et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). Circulation 108, 1404–1418 (2003).

    Article  PubMed  Google Scholar 

  5. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Nahrendorf, M. et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114, 1504–1511 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Rudd, J. H. et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J. Am. Coll. Cardiol. 50, 892–896 (2007).

    Article  PubMed  Google Scholar 

  8. Tawakol, A. et al. In vivo18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818–1824 (2006).

    Article  PubMed  Google Scholar 

  9. Nekolla, S. G., Martinez-Moeller, A. & Saraste, A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur. J. Nucl. Med. Mol. Imaging 36 (Suppl. 1), S121–S130 (2009).

    Article  PubMed  Google Scholar 

  10. Underwood, S. R. et al. Myocardial perfusion scintigraphy: the evidence. Eur. J. Nucl. Med. Mol. Imaging 31, 261–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lima, R. S. et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J. Am. Coll. Cardiol. 42, 64–70 (2003).

    Article  PubMed  Google Scholar 

  12. Petretta, M., Soricelli, A., Storto, G. & Cuocolo, A. Assessment of coronary flow reserve using single photon emission computed tomography with technetium 99m-labeled tracers. J. Nucl. Cardiol. 15, 456–465 (2008).

    Article  PubMed  Google Scholar 

  13. Go, R. T. et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J. Nucl. Med. 31, 1899–1905 (1990).

    CAS  PubMed  Google Scholar 

  14. Di Carli, M. F. & Hachamovitch, R. New technology for noninvasive evaluation of coronary artery disease. Circulation 115, 1464–1480 (2007).

    Article  PubMed  Google Scholar 

  15. Bax, J. J. et al. Diagnostic and clinical perspectives of fusion imaging in cardiology: is the total greater than the sum of its parts? Heart 93, 16–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Budoff, M. J. et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J. Am. Coll. Cardiol. 49, 1860–1870 (2007).

    Article  PubMed  Google Scholar 

  17. Greenland, P. et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA writing committee to update the 2000 expert consensus document on electron beam computed tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J. Am. Coll. Cardiol. 49, 378–402 (2007).

    Article  PubMed  Google Scholar 

  18. Kitagawa, T. et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc. Imaging 2, 153–160 (2009).

    Article  PubMed  Google Scholar 

  19. van Werkhoven, J. M. et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J. Am. Coll. Cardiol. 53, 623–632 (2009).

    Article  PubMed  Google Scholar 

  20. Groves, A. M. et al. First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur. J. Nucl. Med. Mol. Imaging 36, 2027–2033 (2009).

    Article  PubMed  Google Scholar 

  21. Kajander, S. et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 122, 603–613 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Namdar, M. et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J. Nucl. Med. 46, 930–935 (2005).

    PubMed  Google Scholar 

  23. Rispler, S. et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J. Am. Coll. Cardiol. 49, 1059–1067 (2007).

    Article  PubMed  Google Scholar 

  24. Sato, A. et al. Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J. Nucl. Cardiol. 17, 19–26 (2010).

    Article  PubMed  Google Scholar 

  25. Schepis, T. et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J. Nucl. Med. 48, 1424–1430 (2007).

    Article  PubMed  Google Scholar 

  26. Shaw, L. J., Raggi, P., Schisterman, E., Berman, D. S. & Callister, T. Q. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228, 826–833 (2003).

    Article  PubMed  Google Scholar 

  27. Schenker, M. P. et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 117, 1693–1700 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gaemperli, O. et al. Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? Eur. Heart J. 30, 2921–2929 (2009).

    Article  PubMed  Google Scholar 

  29. Pazhenkottil, A. P. et al. Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography. Eur. Heart J. 32, 1465–1471 (2011).

    Article  PubMed  Google Scholar 

  30. Stehning, C., Boernert, P. & Nehrke, K. Advances in coronary MRA from vessel wall to whole heart imaging. Magn. Reson. Med. Sci. 6, 157–170 (2007).

    Article  PubMed  Google Scholar 

  31. Raggi, P. et al. Atherosclerotic plaque imaging: contemporary role in preventive cardiology. Arch. Intern. Med. 165, 2345–2353 (2005).

    Article  PubMed  Google Scholar 

  32. Kim, W. Y. et al. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106, 296–299 (2002).

    Article  PubMed  Google Scholar 

  33. Macedo, R. et al. MRI detects increased coronary wall thickness in asymptomatic individuals: the multi-ethnic study of atherosclerosis (MESA). J. Magn. Reson. Imaging 28, 1108–1115 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnstone, M. T. et al. In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model. Arterioscler. Thromb. Vasc. Biol. 21, 1556–1560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moreno, P. R. et al. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90, 775–778 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. von Bary, C. et al. MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ. Cardiovasc. Imaging 4, 147–155 (2011).

    Article  PubMed  Google Scholar 

  37. Corti, R. & Fuster, V. Imaging of atherosclerosis: magnetic resonance imaging. Eur. Heart J. 32, 1709–1719 (2011).

    Article  PubMed  Google Scholar 

  38. Rudd, J. H. et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J. Am. Coll. Cardiol. 55, 2527–2535 (2010).

    Article  PubMed  Google Scholar 

  39. Rogers, I. S. et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc. Imaging 3, 388–397 (2010).

    Article  PubMed  Google Scholar 

  40. Leuschner, F. & Nahrendorf, M. Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circ. Res. 108, 593–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laitinen, I. et al. Evaluation of αvβ3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging 2, 331–338 (2009).

    Article  PubMed  Google Scholar 

  42. Flotats, A. et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur. J. Nucl. Med. Mol. Imaging 38, 201–212 (2011).

    Article  PubMed  Google Scholar 

  43. Sinusas, A. J. et al. Multimodality cardiovascular molecular imaging, part I. Circ. Cardiovasc. Imaging 1, 244–256 (2008).

    Article  PubMed  Google Scholar 

  44. Rudd, J. H. et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med. 49, 871–878 (2008).

    Article  PubMed  Google Scholar 

  45. Sadeghi, M. M. et al. Detection of injury-induced vascular remodeling by targeting activated αvβ3 integrin in vivo. Circulation 110, 84–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Schafers, M. et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109, 2554–2559 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Terrovitis, J. et al. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54, 1619–1626 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Knuuti, J. & Bengel, F. M. Positron emission tomography and molecular imaging. Heart 94, 360–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Rudd, J. H. et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J. Am. Coll. Cardiol. 55, 2527–2535 (2010).

    Article  PubMed  Google Scholar 

  50. Wu, J. C., Bengel, F. M. & Gambhir, S. S. Cardiovascular molecular imaging. Radiology 244, 337–355 (2007).

    Article  PubMed  Google Scholar 

  51. McAlister, F. A. et al. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA 297, 2502–2514 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Epstein, A. E. et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 51, 2085–2105 (2008).

    Article  Google Scholar 

  53. Linde, C. et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J. Am. Coll. Cardiol. 52, 1834–1843 (2008).

    Article  PubMed  Google Scholar 

  54. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article  PubMed  Google Scholar 

  55. Tang, A. S. et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 363, 2385–2395 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Dickstein, K. et al. 2010 focused update of ESC guidelines on device therapy in heart failure: an update of the 2008 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC guidelines for cardiac and resynchronization therapy. Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Eur. J. Heart Fail. 12, 1143–1153 (2010).

    Article  PubMed  Google Scholar 

  57. Delgado, V. & Bax, J. J. Assessment of systolic dyssynchrony for cardiac resynchronization therapy is clinically useful. Circulation 123, 640–655 (2011).

    Article  PubMed  Google Scholar 

  58. Delgado, V. et al. Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 123, 70–78 (2011).

    Article  PubMed  Google Scholar 

  59. Chung, E. S. et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 117, 2608–2616 (2008).

    Article  PubMed  Google Scholar 

  60. Bilchick, K. C. et al. Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc. Imaging 1, 561–568 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Khan, F. Z. et al. Targeted left ventricular lead placement using speckle tracking echocardiography improves the acute hemodynamic response to cardiac resynchronization therapy: a randomized controlled trial [abstract]. J. Am. Coll. Cardiol. 57, aE2033 (2011).

    Article  Google Scholar 

  62. Gorcsan III, J. et al. Relationship of echocardiographic dyssynchrony to long-term survival after cardiac resynchronization therapy. Circulation 122, 1910–1918 (2010).

    Article  Google Scholar 

  63. Amundsen, B. H. et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 47, 789–793 (2006).

    Article  PubMed  Google Scholar 

  64. Leyva, F. et al. Development and validation of a clinical index to predict survival after cardiac resynchronisation therapy. Heart 95, 1619–1625 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Auger, D., Schalij, M. J., Bax, J. J. & Delgado, V. Three-dimensional imaging in cardiac resynchronization therapy. Rev. Esp. Cardiol. 64, 1035–1044 (2011).

    Article  PubMed  Google Scholar 

  66. Sutton, M. G. et al. Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE). Circulation 113, 266–272 (2006).

    Article  PubMed  Google Scholar 

  67. Wikstrom, G. et al. The effects of aetiology on outcome in patients treated with cardiac resynchronization therapy in the CARE-HF trial. Eur. Heart J. 30, 782–788 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bleeker, G. B. et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113, 969–976 (2006).

    Article  PubMed  Google Scholar 

  69. Ypenburg, C. et al. Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am. J. Cardiol. 99, 657–660 (2007).

    Article  PubMed  Google Scholar 

  70. Kim, R. J. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343, 1445–1453 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Singh, J. P. et al. Left ventricular lead position and clinical outcome in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT) Trial. Circulation 123, 1159–1166 (2011).

    Article  PubMed  Google Scholar 

  72. Auricchio, A. et al. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation 109, 1133–1139 (2004).

    Article  PubMed  Google Scholar 

  73. Butter, C. et al. Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients. Circulation 104, 3026–3029 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Helm, R. H. et al. Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation 115, 953–961 (2007).

    Article  PubMed  Google Scholar 

  75. Ypenburg, C. et al. Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J. Am. Coll. Cardiol. 52, 1402–1409 (2008).

    Article  PubMed  Google Scholar 

  76. Giraldi, F. et al. Long-term effectiveness of cardiac resynchronization therapy in heart failure patients with unfavorable cardiac veins anatomy comparison of surgical versus hemodynamic procedure. J. Am. Coll. Cardiol. 58, 483–490 (2011).

    Article  PubMed  Google Scholar 

  77. Uebleis, C. et al. Electrocardiogram-gated 18F-FDG PET/CT hybrid imaging in patients with unsatisfactory response to cardiac resynchronization therapy: initial clinical results. J. Nucl. Med. 52, 67–71 (2011).

    Article  PubMed  Google Scholar 

  78. Duckett, S. G. et al. Advanced image fusion to overlay coronary sinus anatomy with real-time fluoroscopy to facilitate left ventricular lead implantation in CRT. Pacing Clin. Electrophysiol. 34, 226–234 (2011).

    Article  PubMed  Google Scholar 

  79. Abraham, W. T. & Hayes, D. L. Cardiac resynchronization therapy for heart failure. Circulation 108, 2596–2603 (2003).

    Article  PubMed  Google Scholar 

  80. Duckett, S. G. et al. A novel cardiac MRI protocol to guide successful cardiac resynchronization therapy implantation. Circ. Heart Fail. 3, e18–e21 (2010).

    Article  PubMed  Google Scholar 

  81. Nkomo, V. T. et al. Burden of valvular heart diseases: a population-based study. Lancet 368, 1005–1011 (2006).

    Article  PubMed  Google Scholar 

  82. Carabello, B. A. & Paulus, W. J. Aortic stenosis. Lancet 373, 956–966 (2009).

    Article  PubMed  Google Scholar 

  83. Iung, B. et al. Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery? Eur. Heart J. 26, 2714–2720 (2005).

    Article  PubMed  Google Scholar 

  84. Mirabel, M. et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur. Heart J. 28, 1358–1365 (2007).

    Article  PubMed  Google Scholar 

  85. Zajarias, A. & Cribier, A. G. Outcomes and safety of percutaneous aortic valve replacement. J. Am. Coll. Cardiol. 53, 1829–1836 (2009).

    Article  PubMed  Google Scholar 

  86. Delgado, V. et al. Multimodality imaging before, during, and after percutaneous mitral valve repair. Heart 97, 1704–1714 (2011).

    Article  PubMed  Google Scholar 

  87. Vahanian, A. Transcatheter aortic valve implantation: a snapshot from the United Kingdom. J. Am. Coll. Cardiol. 58, 2139–2140 (2011).

    Article  PubMed  Google Scholar 

  88. Kempfert, J. et al. Automatically segmented DynaCT: enhanced imaging during transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 58, e211 (2011).

    Article  PubMed  Google Scholar 

  89. Alfieri, O. et al. Novel suture device for beating-heart mitral leaflet approximation. Ann. Thorac. Surg. 74, 1488–1493 (2002).

    Article  PubMed  Google Scholar 

  90. Feldman, T. et al. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 364, 1395–1406 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Franzen, O. et al. Acute outcomes of MitraClip therapy for mitral regurgitation in high-surgical-risk patients: emphasis on adverse valve morphology and severe left ventricular dysfunction. Eur. Heart J. 31, 1373–1381 (2010).

    Article  PubMed  Google Scholar 

  92. Tamburino, C. et al. Percutaneous mitral valve repair with the MitraClip system: acute results from a real world setting. Eur. Heart J. 31, 1382–1389 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mauri, L. et al. The EVEREST II trial: design and rationale for a randomized study of the evalve mitraclip system compared with mitral valve surgery for mitral regurgitation. Am. Heart J. 160, 23–29 (2010).

    Article  PubMed  Google Scholar 

  94. Shanks, M. et al. Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ. Cardiovasc. Imaging 3, 694–700 (2010).

    Article  PubMed  Google Scholar 

  95. Zamorano, J. L. et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur. J. Echocardiogr. 12, 557–584 (2011).

    Article  PubMed  Google Scholar 

  96. Cribier, A. et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106, 3006–3008 (2002).

    Article  PubMed  Google Scholar 

  97. Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363, 1597–1607 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Schultz, C. J. et al. Three dimensional evaluation of the aortic annulus using multislice computer tomography: are manufacturer's guidelines for sizing for percutaneous aortic valve replacement helpful? Eur. Heart J. 31, 849–856 (2010).

    Article  PubMed  Google Scholar 

  100. Messika-Zeitoun, D. et al. Multimodal assessment of the aortic annulus diameter: implications for transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 55, 186–194 (2010).

    Article  PubMed  Google Scholar 

  101. Ng, A. C. et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ. Cardiovasc. Imaging 3, 94–102 (2010).

    Article  PubMed  Google Scholar 

  102. Koos, R. et al. Evaluation of aortic root for definition of prosthesis size by magnetic resonance imaging and cardiac computed tomography: Implications for transcatheter aortic valve implantation. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2011.01.044.

  103. Vahanian, A. et al. Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 29, 1463–1470 (2008).

    Article  PubMed  Google Scholar 

  104. Delgado, V. et al. Multimodality imaging in transcatheter aortic valve implantation: key steps to assess procedural feasibility. EuroIntervention 6, 643–652 (2010).

    Article  PubMed  Google Scholar 

  105. Horvath, K. A. et al. Midterm results of transapical aortic valve replacement via real-time magnetic resonance imaging guidance. J. Thorac. Cardiovasc. Surg. 139, 424–430 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to researching the data for this article, discussion of its contents, and to writing, reviewing, and editing the manuscript before submission.

Corresponding author

Correspondence to Victoria Delgado.

Ethics declarations

Competing interests

V. Delgado declares that she is or has been a consultant for St. Jude Medical. B. L. van der Hoeven and M. J. Schalij declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Hoeven, B., Schalij, M. & Delgado, V. Multimodality imaging in interventional cardiology. Nat Rev Cardiol 9, 333–346 (2012). https://doi.org/10.1038/nrcardio.2012.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing