Review Article | Published:

Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease

Nature Reviews Cardiology volume 8, pages 393404 (2011) | Download Citation

Abstract

The three-dimensional NOGA® (Biologics Delivery Systems, a Johnson & Johnson company, Irwindale, CA, USA) electromechanical mapping system simultaneously registers the electrical and mechanical activities of the left ventricle, enabling online assessment of myocardial viability. The system distinguishes between viable, nonviable, stunned, and hibernating myocardium and can assess wall motion. The evaluation of the electrophysiological state of the tissue by NOGA® mapping has been validated by comparing the electroanatomical voltage and local linear shortening maps obtained with this technique with several noninvasive diagnostic tests. Bipolar signal analysis and determination of the existence and degree of transmural infarctions are also possible with NOGA®. Immediately after percutaneous coronary intervention, an increased electromechanical discordance between voltage and local linear shortening maps indicates procedure-induced stunning that is caused by repetitive ischemia or microvascular compromise. Catheter-based direct intramyocardial injection of cells or gene constructs by NOGA® reduces the likelihood of systemic toxicity of the injected substance, resulting in minimal washout, limited exposure of nontarget organs, and precise localization to ischemic and peri-ischemic myocardial regions in patients with chronic myocardial ischemia. In addition, direct intramyocardial injection enables the treatment of chronic myocardial infarction by provoking a chemotactic signal at the injection–injury site that contributes to cell engraftment. By measuring the electrical activation pattern in delayed-motion areas, NOGA® might also be useful to predict response to cardiac resynchronization therapy.

Key points

  • The main diagnostic value of NOGA® images lies in their ability to provide online assessment of myocardial viability in the catheterization laboratory

  • NOGA® can also be used to generate local linear shortening (LLS) maps, which reflect regional wall motion

  • NOGA® endocardial mapping can distinguish viable, nonviable, stunned, and hibernating myocardium, the latter by revealing mismatch between electrical and mechanical activity

  • The validation of myocardial viability assessment by NOGA® is based on good concordance with standardized noninvasive imaging tests; this technique is less concordant with other imaging approaches for wall-motion assessment

  • Delineation of the infarcted area by NOGA® enables targeted delivery of cells or gene constructs in areas with myocardial unipolar voltage ≥9 mV, bipolar amplitude >1.9 mV, and LLS >6%

  • Endocardial mapping by NOGA® enables a noncoronary segmental quantitative analysis of extent and severity of confluent ischemia in patients with ischemic cardiomyopathy

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Nonfluoroscopic, in vivo navigation and mapping technology. Nat. Med. 2, 1393–1395 (1996).

  2. 2.

    , , & Hemodynamic evaluation of the heart with a nonfluoroscopic electromechanical mapping technique. Circulation 96, 3672–3680 (1997).

  3. 3.

    et al. Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation 98, 2055–2064 (1998).

  4. 4.

    , & A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 95, 1611–1622 (1997).

  5. 5.

    , & Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation 98, 1837–1841 (1998).

  6. 6.

    , , , & New method for nonfluoroscopic endocardial mapping in humans: accuracy assessment and first clinical results. Circulation 97, 2426–2432 (1998).

  7. 7.

    et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102, 965–974 (2000).

  8. 8.

    et al. Validation of QwikStar Catheter for left ventricular electromechanical mapping with NOGA XP system. Tex. Heart Inst. J. 35, 240–244 (2008).

  9. 9.

    et al. Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovasc. Res. 58, 444–450 (2003).

  10. 10.

    et al. Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J. Am. Coll. Cardiol. 41, 1841–1846 (2003).

  11. 11.

    et al. Evaluation of the acute and chronic safety of the biosense injection catheter system in porcine hearts. Catheter Cardiovasc. Interv. 48, 447–453 (1999).

  12. 12.

    , , & Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 101, 454–458 (2000).

  13. 13.

    et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J. Am. Coll. Cardiol. 35, 1031–1039 (2000).

  14. 14.

    et al. A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc. Interv. 68, 372–378 (2006).

  15. 15.

    et al. Design and rationale for the Myocardial Stem Cell Administration after Acute Myocardial Infarction (MYSTAR) Study: a multicenter, prospective, randomized, single-blind trial comparing early and late intracoronary or combined (percutaneous intramyocardial and intracoronary) administration of nonselected autologous bone marrow cells to patients after acute myocardial infarction. Am. Heart J. 153, 212.e1–212.e7 (2007).

  16. 16.

    et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111, 150–156 (2005).

  17. 17.

    et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol. 45, 982–988 (2005).

  18. 18.

    et al. Intramyocardial injection of genes with a novel percutaneous technique. Initial safety data of the Euroinject One Study. Heart Drug 1, 299–304 (2001.

  19. 19.

    , , & Release of biomarkers of myocardial damage after direct intramyocardial injection of genes and stem cells via the percutaneous transluminal route. Eur. Heart J. 29, 1819–1826 (2008).

  20. 20.

    et al. Evaluation of left ventricular volumes and ejection fraction with a nonfluoroscopic endoventricular three-dimensional mapping technique. Am. Heart J. 140, 596–602 (2000).

  21. 21.

    et al. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat. Clin. Pract. Cardiovasc. Med. 6, 70–81 (2009).

  22. 22.

    et al. One-year follow-up of feasibility and safety of the first US, randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc. Interv. 2, 9–16 (2009).

  23. 23.

    , & Comparison of the left ventricular electromechanical map before percutaneous coronary stent revascularization and at one-month follow-up in patients with a recent ST elevation infarction. Catheter Cardiovasc. Interv. 64, 153–159 (2005).

  24. 24.

    et al. Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease. Heart Rhythm 4, 257–265 (2007).

  25. 25.

    et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin. Med. J. (Engl.) 117, 1443–1448 (2004).

  26. 26.

    et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 94, 92–95 (2004).

  27. 27.

    , , , & Technology Insight: magnetic navigation in coronary interventions. Nat. Clin. Pract. Cardiovasc. Med. 5, 148–156 (2008).

  28. 28.

    et al. First experience with remote left ventricular mapping and transendocardial cell injection with a novel integrated magnetic navigation-guided electromechanical mapping system. EuroIntervention 3, 142–148 (2007).

  29. 29.

    et al. Electromechanical characterization of acute experimental myocardial infarction. J. Invasive Cardiol. 11, 329–336 (1999).

  30. 30.

    et al. Correlation of ischemic area and coronary flow with ameroid size in a porcine model. J. Surg. Res. 1, 38–42 (2010).

  31. 31.

    & Biosense left ventricular electromechanical mapping. Asian Cardiovasc. Thorac. Ann. 7, 345–348 (1999).

  32. 32.

    et al. Characterization of hibernating myocardium with NOGA electroanatomic endocardial mapping. Am. J. Cardiol. 95, 722–728 (2005).

  33. 33.

    , , , & Online myocardial viability assessment in the catheterization laboratory via NOGA electroanatomic mapping: quantitative comparison with thallium-201 uptake. Circulation 104, 1005–1011 (2001).

  34. 34.

    et al. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am. J. Cardiol. 100, 1094–1098 (2007).

  35. 35.

    et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J. Am. Coll. Cardiol. 46, 1812–1819 (2005).

  36. 36.

    et al. Evaluation of myocardial perfusion and left ventricular function six months after percutaneous transmyocardial laser revascularization: comparison of two Ho-YAG laser systems with the same wavelength, but different energy delivery and navigation systems. Lasers Surg. Med. 33, 273–281 (2003).

  37. 37.

    & Endoventricular electromechanical mapping—the diagnostic and therapeutic utility of the NOGA XP Cardiac Navigation System. J. Cardiovasc. Transl. Res. 2, 48–62 (2009).

  38. 38.

    , , , & Cell therapy for cardiovascular disease: a comparison of methods of delivery. J. Cardiovasc. Transl. Res. 4, 177–181 (2011).

  39. 39.

    et al. Left ventricular electromechanical mapping: preliminary evidence of electromechanical changes after successful coronary intervention. Am. Heart J. 144, 693–701 (2002).

  40. 40.

    et al. Electromechanical mapping for determination of myocardial contractility and viability A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. J. Am. Coll. Cardiol. 40, 1067–1074 (2002).

  41. 41.

    et al. Comparison between 360° and 180° data sampling in thallium-201 rest-redistribution single-photon emission tomography to predict functional recovery after revascularization. Eur. J. Nucl. Med. 24, 516–522 (1997).

  42. 42.

    , , , & Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr. Probl. Cardiol. 26, 147–186 (2001).

  43. 43.

    et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction. Am. J. Cardiol. 85, 1432–1439 (2000).

  44. 44.

    et al. Simultaneous assessment of myocardial viability and function for the detection of hibernating myocardium using ECG-gated 99mTc-tetrofosmin emission tomography: a comparison with 201Tl emission tomography combined with cine magnetic resonance imaging. Nucl. Med. Commun. 20, 209–214 (1999).

  45. 45.

    et al. Electromechanical characterization of myocardial hibernation in a pig model. Coron. Artery Dis. 10, 195–198 (1999).

  46. 46.

    et al. Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation 98, 1116–1124 (1998).

  47. 47.

    , , , & Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation 100, 1744–1750 (1999).

  48. 48.

    et al. Comparison of endocardial electromechanical mapping with radionuclide perfusion imaging to assess myocardial viability and severity of myocardial ischemia in angina pectoris. Am. J. Cardiol. 87, 874–880 (2001).

  49. 49.

    et al. Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. J. Am. Coll. Cardiol. 37, 1590–1597 (2001).

  50. 50.

    et al. Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 103, 1631–1637 (2001).

  51. 51.

    et al. Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J. Am. Coll. Cardiol. 38, 91–98 (2001).

  52. 52.

    et al. Catheter-based electromechanical mapping to assess regional myocardial function: a comparative analysis with transthoracic echocardiography. Catheter Cardiovasc. Interv. 52, 342–347 (2001).

  53. 53.

    et al. Electromechanical mapping for determination of myocardial contractility and viability. A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. J. Am. Coll. Cardiol. 40, 1067–1074 (2002).

  54. 54.

    et al. Method for three-dimensional data registration from disparate imaging modalities in the NOGA Myocardial Viability Trial. IEEE Trans. Med. Imaging 21, 1264–1270 (2002).

  55. 55.

    et al. Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation 106, 957–961 (2002).

  56. 56.

    et al. Comparison of left ventricular electromechanical mapping and left ventricular angiography: defining practical standards for analysis of NOGA maps. Tex. Heart Inst. J. 30, 19–26 (2003).

  57. 57.

    et al. Electromechanical mapping versus positron emission tomography and single photon emission computed tomography for the detection of myocardial viability in patients with ischemic cardiomyopathy. J. Am. Coll. Cardiol. 41, 843–848 (2003).

  58. 58.

    et al. Electromechanical properties of the perfusion/metabolism mismatch: comparison of nonfluoroscopic electroanatomic mapping with 18F-FDG PET imaging. J. Nucl. Med. 45, 1611–1618 (2004).

  59. 59.

    et al. Electromechanical mapping identifies improvement in function and retention of contractile reserve after revascularization in ischemic cardiomyopathy. Circulation 110, 2410–2416 (2004).

  60. 60.

    & Correlation between endocardial voltage mapping and myocardial perfusion: implications for the assessment of myocardial ischemia. Coron. Artery Dis. 16, 163–167 (2005).

  61. 61.

    et al. Radiolabeled arginine-glycine-aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. JACC Cardiovasc. Imaging 1, 500–510 (2008).

  62. 62.

    et al. Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J. Am. Coll. Cardiol. 38, 91–98 (2001).

  63. 63.

    et al. Validation of R wave voltage endomyocardial mapping to assess myocardial fibrosis: comparison with thallium and dobutamine echocardiography in a swine model. J. Interv. Cardiol. 16, 23–31 (2003).

  64. 64.

    et al. Percutaneous endocardial injection of erythropoietin: assessment of cardioprotection by electromechanical mapping. Eur. J. Heart Fail. 8, 443–450 (2006).

  65. 65.

    et al. Comparison of mechanical properties of the left ventricle in patients with severe coronary artery disease by nonfluoroscopic mapping versus two-dimensional echocardiograms. Am. J. Cardiol. 86, 1047–1050 (2000).

  66. 66.

    et al. Evaluation of global left ventricular function assessment of non-fluorescent electromechanical endocardial mapping compared with biplane left ventricular contrast angiography. Neth. Heart J. 18, 72–77 (2010).

  67. 67.

    et al. Evaluation of inotropic changes in ventricular function by NOGA mapping: comparison with echocardiography. J. Appl. Physiol. 93, 418–426 (2002).

  68. 68.

    , , & Endocardial electromechanical mapping in a porcine acute infarct and reperfusion model evaluating the extent of myocardial ischemia. J. Invasive Cardiol. 15, 497–501 (2003).

  69. 69.

    , , , & Electromechanical assessment of left ventricular function following successful percutaneous coronary revascularization. Catheter Cardiovasc. Interv. 54, 466–472 (2001).

  70. 70.

    et al. Prognostic value of endocardial electromechanical mapping in patients with left ventricular dysfunction undergoing percutaneous coronary intervention. Am. J. Cardiol. 94, 1129–1133 (2004).

  71. 71.

    et al. Hypoxia-inducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction. J. Cardiovasc. Transl. Res. 3, 114–121 (2010).

  72. 72.

    et al. Imaging the migration of therapeutically delivered cardiac stem cells. JACC Cardiovasc. Imaging 3, 772–775 (2010).

  73. 73.

    et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112 (Suppl. 1), I150–I156 (2005).

  74. 74.

    et al. Human angiogenic cell precursors restore function in the infarcted rat heart: a comparison of cell delivery routes. Eur. J. Heart Fail. 10, 525–533 (2008).

  75. 75.

    et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27, 1114–1122 (2006).

  76. 76.

    et al. Non-surgical stem cell delivery strategies and in vivo cell tracking to injured myocardium. Int. J. Cardiovasc. Imaging doi:10.1007/s10554-010-9658–4.

  77. 77.

    et al. Delayed recovery of myocardial blood flow after intracoronary stem cell administration. Stem Cell Rev. doi: 10.1007/s12015-010-9213–7.

  78. 78.

    et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103, 2138–2143 (2001).

  79. 79.

    et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

  80. 80.

    et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42, 2063–2069 (2003).

  81. 81.

    et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294–2302 (2003).

  82. 82.

    et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110 (Suppl. 1), II213–II218 (2004).

  83. 83.

    et al. Direct intramyocardial percutaneous delivery of autologous bone marrow in patients with refractory myocardial angina. Am. Heart J. 151, 674–680 (2006).

  84. 84.

    et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am. J. Cardiol. 97, 823–829 (2006).

  85. 85.

    et al. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am. J. Cardiol. 100, 1094–1098 (2007).

  86. 86.

    et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115, 3165–3172 (2007).

  87. 87.

    et al. Intramyocardial bone marrow cell transplantation and the progression of coronary atherosclerosis in patients with chronic myocardial ischemia. Acute Card. Care 9, 243–251 (2007).

  88. 88.

    et al. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur. Heart J. 28, 2998–3005 (2007).

  89. 89.

    et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301, 1997–2004 (2009).

  90. 90.

    et al. for the NORTHERN Trial Investigators. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol. Ther. 17, 1109–1115 (2009).

  91. 91.

    et al. Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart 95, 1145–1152 (2009).

  92. 92.

    et al. Diabetic and nondiabetic patients respond differently to transendocardial injection of bone marrow mononuclear cells: findings from prospective clinical trials in “no-option” patients [Spanish]. Rev. Esp. Cardiol. 61, 635–639 (2008).

  93. 93.

    , , , & Improvement of myocardial perfusion reserve detected by cardiovascular magnetic resonance after direct endomyocardial implantation of autologous bone marrow cells in patients with severe coronary artery disease. J. Cardiovasc. Magn. Reson. 12, 6 (2010).

  94. 94.

    et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J. Cardiovasc. Transl. Res. 3, 160–168 (2010).

  95. 95.

    et al. Endocardial electrogram analysis after intramyocardial injection of mesenchymal stem cells in the chronic ischemic myocardium. Pacing Clin Electrophysiol. 32, 1319–1328 (2009).

  96. 96.

    et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation 112 (Suppl. 1), I157–I165 (2005).

  97. 97.

    et al. Effect of intramyocardial delivery of autologous bone marrow mononuclear stem cells on the regional myocardial perfusion. NOGA-guided subanalysis of the MYSTAR prospective randomised study. Thromb. Hemost. 103, 564–567 (2010).

  98. 98.

    et al. Slow wall motion rather than electrical conduction delay underlies mechanical dyssynchrony in postinfarction patients with narrow QRS complex. J. Cardiovasc. Electrophysiol. 21, 70–77 (2010).

  99. 99.

    et al. A comparison of unipolar and bipolar electrodes during cardiac mapping studies. Pacing Clin. Electrophysiol. 19, 1196–1204 (1996).

  100. 100.

    , , , & Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix. J. Thorac. Cardiovasc. Surg. 133, 979–985 (2007).

  101. 101.

    Meta-analysis of Cardiac Stem Cell Studies (MESS). NCT01098591. ClinicalTrials.gov . (2011).

  102. 102.

    Bone Marrow Derived Mononuclear Cells for Ischemic Cardiomyopathy (ALSTER-STAR). NCT01144221. ClinicalTrials.gov . (2011).

Download references

Acknowledgements

The authors thank Martin W. Bergmann for providing Figure 2.

Author information

Affiliations

  1. Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria

    • Mariann Gyöngyösi
  2. Clinical Cardiovascular Cell Therapy, Perlman Cardiovascular Clinic, San Diego Medical Center, University of California, San Diego, mail code 0986, 9350 Campus Point Drive, Suite 1D, La Jolla, CA 92037, USA

    • Nabil Dib

Authors

  1. Search for Mariann Gyöngyösi in:

  2. Search for Nabil Dib in:

Contributions

Both authors contributed equally to discussion of content for the article, researching data to include in the manuscript, reviewing and editing the manuscript before submission, and revising the manuscript after peer-review.

Competing interests

N. Dib is a consultant and in the speaker's bureau of Biologics Delivery Systems, a Johnson & Johnson company. M. Gyöngyösi declares no competing interests.

Corresponding author

Correspondence to Mariann Gyöngyösi.

Supplementary information

Word documents

  1. 1.

    Supplementary Table 1

    Human NOGA®-guided intramyocardial injection studies

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrcardio.2011.64

Further reading