Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiplatelet drug 'resistance'. Part 2: laboratory resistance to antiplatelet drugs—fact or artifact?

Abstract

Many patients experience recurrent ischemic events despite optimal antiplatelet therapy. This has generated much interest in finding a laboratory test of platelet function to identify such patients, who have been termed 'nonresponders' or antiplatelet 'resistant'. Laboratory tests of platelet function have identified 'resistance' in 5–60% of patients taking aspirin and 4–30% of those taking clopidogrel. However, these tests of 'resistance' have not correlated closely with subsequent recurrent events, and have not reliably identified nonresponders to antiplatelet therapy. Here, we identify and discuss three major limitations common to all these tests. Firstly, they are performed on citrate-anticoagulated blood, secondly, blood is stored for a variable period of time, and thirdly, the assessment of thrombotic status on the basis of platelet response to only one or two agonists ignores the complexity of the mechanism of platelet thrombus formation in vivo. In this Review we discuss the significance of these important limitations, and the applicability of such in vitro platelet function tests to the prediction of in vivo events. We conclude that such tests are so unphysiological that they cannot reliably predict the true thrombotic status of patients. Identification of 'resistance' on the basis of these tests lacks sensitivity and specificity for identifying thrombotic risk, and is likely to be artifactual.

Key Points

  • We believe that the true thrombotic status of patients cannot be assessed using currently available in vitro tests and, therefore, the existence of 'resistance' to antiplatelet therapy is questionable

  • Most data on 'resistance' to antiplatelet drugs are provided by platelet aggregometry, modified thromboelastography, the platelet function analyzer 100 (PFA-100)®a and VerifyNow®b assays

  • With the exception of thrombin, physiological platelet stimuli do not cause secondary aggregation, granule release and thromboxane A2 generation in native blood

  • The use of citrated blood with critically low Ca2+ distorts the in vivo effect of platelet agonists and antagonists

  • None of the currently available in vitro tests of platelet function allow the assessment of thrombin generation by activated platelets

aDade international, Inc., Deerfield, IL.

bAccumetrics, Inc., San Diego, CA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic demonstrating the key role of calcium in platelet reactivity.

Similar content being viewed by others

References

  1. Gurbel, P. A. et al. Evaluation of dose-related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation 115, 3156–3164 (2007).

    CAS  PubMed  Google Scholar 

  2. Gum, P. A. et al. Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am. J. Cardiol. 88, 230–235 (2001).

    CAS  PubMed  Google Scholar 

  3. Gum, P. A., Kottke-Marchant, K., Welsh, P. A., White, J. & Topol, E. J. A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J. Am. Coll. Cardiol. 41, 961–965 (2003).

    CAS  PubMed  Google Scholar 

  4. Mueller, M. R. et al. Variable platelet response to low-dose ASA and the risk of limb deterioration in patients submitted to peripheral arterial angioplasty. Thromb. Haemost. 78, 1003–1007 (1997).

    CAS  PubMed  Google Scholar 

  5. Grotemeyer, K. H., Scharafinski, H. W. & Husstedt, I. W. Two-year follow-up of aspirin responder and aspirin non responder. A pilot-study including 180 post-stroke patients. Thromb. Res. 71, 397–403 (1993).

    CAS  PubMed  Google Scholar 

  6. Mani, H., Linnemann, B., Luxembourg, B., Kirchmayr, K. & Lindhoff-Last, E. Response to aspirin and clopidogrel monitored with different platelet function methods. Platelets 17, 303–310 (2006).

    CAS  PubMed  Google Scholar 

  7. Nguyen, T. A., Diodati, J. G. & Pharand, C. Resistance to clopidogrel: a review of the evidence. J. Am. Coll. Cardiol. 45, 1157–1164 (2005).

    CAS  PubMed  Google Scholar 

  8. Gurbel, P. A. et al. The relation of dosing to clopidogrel responsiveness and the incidence of high post-treatment platelet aggregation in patients undergoing coronary stenting. J. Am. Coll. Cardiol. 45, 1392–1396 (2005).

    CAS  PubMed  Google Scholar 

  9. Gurbel, P. A. & Tantry, U. S. Drug insight: clopidogrel nonresponsiveness. Nat. Clin. Pract. Cardiovasc. Med. 3, 387–395 (2006).

    CAS  PubMed  Google Scholar 

  10. Gurbel, P. A. & Tantry, U. S. Aspirin and clopidogrel resistance: consideration and management. J. Interv. Cardiol. 19, 439–448 (2006).

    PubMed  Google Scholar 

  11. Barnes, G. D. et al. Dual antiplatelet agent failure: a new syndrome or clinical nonentity? Am. Heart J. 154, 732–735 (2007).

    CAS  PubMed  Google Scholar 

  12. Christiaens, L., Ragot, S., Mergy, J., Allal, J. & Macchi, L. Major clinical vascular events and aspirin-resistance status as determined by the PFA-100 method among patients with stable coronary artery disease: a prospective study. Blood Coagul. Fibrinolysis 19, 235–239 (2008).

    PubMed  Google Scholar 

  13. Sweeny, J. M., Gorog, D. A. & Fuster, V. Antiplatelet drug 'resistance'. Part 1: mechanisms and clinical measurements. Nat. Rev. Cardiol. 6, 273–282 (2009).

    CAS  PubMed  Google Scholar 

  14. Zucker, M. B. & Grant, R. A. Nonreversible loss of platelet aggregability induced by calcium deprivation. Blood 52, 505–513 (1978).

    CAS  PubMed  Google Scholar 

  15. Shattil, S. J. & Brass, L. F. The interaction of extracellular calcium with the platelet membrane glycoprotein IIb-IIIa complex. Nouv. Rev. Fr. Hematol. 27, 211–217 (1985).

    CAS  PubMed  Google Scholar 

  16. Moore, E. W. Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes. J. Clin. Invest. 49, 318–334 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Scarborough, R. M. Development of eptifibatide. Am. Heart J. 138, 1093–1104 (1999).

    CAS  PubMed  Google Scholar 

  18. Ts'ao, C. H., Lo, R. & Raymond, J. Critical importance of citrate–blood ratio in platelet aggregation studies. Am. J. Clin. Pathol. 65, 518–522 (1976).

    CAS  PubMed  Google Scholar 

  19. Legrand, D. A. & Scheen, A. J. [Aspirin resistance in diabetic patients: laboratory entity or clinical reality?]. Rev. Med. Liege 62, 610–615 (2007) (in French).

    CAS  PubMed  Google Scholar 

  20. Scheen, A. J. & Legrand, D. Aspirin and clopidogrel resistance in patients with diabetes mellitus. Eur. Heart J. 27, 2900–2901 (2006).

    PubMed  Google Scholar 

  21. Fogh-Andersen, N., McNair, P., Moller-Petersen, J. & Madsbad, S. Lowered serum ionized calcium in insulin treated diabetic subjects. Scand. J. Clin. Lab. Invest. Suppl. 165, 93–97 (1983).

    CAS  PubMed  Google Scholar 

  22. Viigimaa, M., Tsikas, D. & Frolich, J. C. Platelet aggregation, sensitivity to prostaglandin E1 and thromboxane A2 release in recombinant hirudin- and heparin-anticoagulated blood. Blood Coagul. Fibrinolysis 7, 259–261 (1996).

    CAS  PubMed  Google Scholar 

  23. Weiss, H. J., Turitto, V. T., Vicic, W. J. & Baumgartner, H. R. Effect of aspirin and dipyridamole on the interaction of human platelets with sub-endothelium: studies using citrated and native blood. Thromb. Haemost. 45, 136–141 (1981).

    CAS  PubMed  Google Scholar 

  24. Lalau, K. C., Kinlough-Rathbone, R. L., Packham, M. A., Suzuki, H. & Mustard, J. F. Conditions affecting the responses of human platelets to epinephrine. Thromb. Haemost. 60, 209–216 (1988).

    Google Scholar 

  25. Mann, K. G., Whelihan, M. F., Butenas, S. & Orfeo, T. Citrate anticoagulation and the dynamics of thrombin generation. J. Thromb. Haemost. 5, 2055–2061 (2007).

    CAS  PubMed  Google Scholar 

  26. Mills, D. C., Robb, I. A. & Roberts, G. C. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J. Physiol. 195, 715–729 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hevelow, M. E., McKenzie, S. M. & Siegel, J. E. Reproducibility of platelet function testing. Lab. Hematol. 13, 59–62 (2007).

    CAS  PubMed  Google Scholar 

  28. Vilen, L. et al. ADP-induced platelet aggregation in young female survivors of acute myocardial infarction and their female controls. Acta Med. Scand. 217, 9–13 (1985).

    CAS  PubMed  Google Scholar 

  29. Michno, A. et al. Alterations of adenine nucleotide metabolism and function of blood platelets in patients with diabetes. Diabetes 56, 462–467 (2007).

    CAS  PubMed  Google Scholar 

  30. Vilen, L., Jacobsson, S., Wadenvik, H. & Kutti, J. ADP-induced platelet aggregation as a function of age in healthy humans. Thromb. Haemost. 61, 490–492 (1989).

    CAS  PubMed  Google Scholar 

  31. Mustard, J. F., Perry, D. W., Kinlough-Rathbone, R. L. & Packham, M. A. Factors responsible for ADP-induced release reaction of human platelets. Am. J. Physiol. 228, 1757–1765 (1975).

    CAS  PubMed  Google Scholar 

  32. Cattaneo, M., Gachet, C., Cazenave, J. P. & Packham, M. A. Adenosine diphosphate (ADP) does not induce thromboxane A2 generation in human platelets. Blood 99, 3868–3869 (2002).

    CAS  PubMed  Google Scholar 

  33. Rossi, E. C. & Lousi, G. A time-dependent increase in the responsiveness of platelet-rich plasma to epinephrine. J. Lab. Clin. Med. 85, 300–306 (1975).

    CAS  PubMed  Google Scholar 

  34. Madsen, N. J., Holmes, C. E., Serrano, F. A., Sobel, B. E. & Schneider, D. J. Influence of preparative procedures on assay of platelet function and apparent effects of antiplatelet agents. Am. J. Cardiol. 100, 722–727 (2007).

    CAS  PubMed  Google Scholar 

  35. LaRosa, C. A. et al. Human neutrophil cathepsin G is a potent platelet activator. J. Vasc. Surg. 19, 306–318 (1994).

    CAS  PubMed  Google Scholar 

  36. Selak, M. A. Neutrophil elastase potentiates cathepsin G-induced platelet activation. Thromb. Haemost. 68, 570–576 (1992).

    CAS  PubMed  Google Scholar 

  37. Renesto, P. & Chignard, M. Enhancement of cathepsin G-induced platelet activation by leukocyte elastase: consequence for the neutrophil-mediated platelet activation. Blood 82, 139–144 (1993).

    CAS  PubMed  Google Scholar 

  38. Amaro, A. et al. Plasma leukocyte elastase concentration in angiographically diagnosed coronary artery disease. Eur. Heart J. 16, 615–622 (1995).

    CAS  PubMed  Google Scholar 

  39. Collier, A. et al. Neutrophil activation detected by increased neutrophil elastase activity in type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 10, 135–138 (1989).

    CAS  PubMed  Google Scholar 

  40. Piwowar, A., Knapik-Kordecka, M. & Warwas, M. Concentration of leukocyte elastase in plasma and polymorphonuclear neutrophil extracts in type 2 diabetes. Clin. Chem. Lab. Med. 38, 1257–1261 (2000).

    CAS  PubMed  Google Scholar 

  41. Kinlough-Rathbone, R. L., Perry, D. W., Rand, M. L. & Packham, M. A. Effects of cathepsin G pretreatment of platelets on their subsequent responses to aggregating agents. Thromb. Res. 95, 315–323 (1999).

    CAS  PubMed  Google Scholar 

  42. Egger, G., Kukovetz, E. M., Hayn, M. & Fabjan, J. S. Changes in the polymorphonuclear leukocyte function of blood samples induced by storage time, temperature and agitation. J. Immunol. Methods 206, 61–71 (1997).

    CAS  PubMed  Google Scholar 

  43. Camenzind, V. et al. Citrate storage affects thrombelastograph analysis. Anesthesiology 92, 1242–1249 (2000).

    CAS  PubMed  Google Scholar 

  44. Heptinstall, S. & Fox, S. C. Human blood platelet behaviour after inhibition of thromboxane synthetase. Br. J. Clin. Pharmacol. 15 (Suppl. 1), 31S–37S (1983).

    PubMed  PubMed Central  Google Scholar 

  45. Bartele, V., Cerletti, C., Schiepatti, A., di Minno, G. & de Gaetano, G. Inhibition of thromboxane synthetase does not necessarily prevent platelet aggregation. Lancet 1, 1057–1058 (1981).

    CAS  PubMed  Google Scholar 

  46. Perneby, C., Wallen, N. H., Rooney, C., Fitzgerald, D. & Hjemdahl, P. Dose- and time-dependent antiplatelet effects of aspirin. Thromb. Haemost. 95, 652–658 (2006).

    CAS  PubMed  Google Scholar 

  47. Meen, O. et al. No case of COX-1-related aspirin resistance found in 289 patients with symptoms of stable CHD remitted for coronary angiography. Scand. J. Clin. Lab. Invest. 68, 185–191 (2008).

    CAS  PubMed  Google Scholar 

  48. Freund, M. et al. Experimental thrombosis on a collagen coated arterioarterial shunt in rats: a pharmacological model to study antithrombotic agents inhibiting thrombin formation and platelet deposition. Thromb. Haemost. 69, 515–521 (1993).

    CAS  PubMed  Google Scholar 

  49. Lepantalo, A., Beer, J. H., Siljander, P., Syrjala, M. & Lassila, R. Variability in platelet responses to collagen—comparison between whole blood perfusions, traditional platelet function tests and PFA-100. Thromb. Res. 103, 123–133 (2001).

    CAS  PubMed  Google Scholar 

  50. Ardlie, N. G., McGuiness, J. A. & Garrett, J. J. Effect on human platelets of catecholamines at levels achieved in the circulation. Atherosclerosis 58, 251–259 (1985).

    CAS  PubMed  Google Scholar 

  51. Soloviev, M. V., Okazaki, Y. & Harasaki, H. Whole blood platelet aggregation in humans and animals: a comparative study. J. Surg. Res. 82, 180–187 (1999).

    CAS  PubMed  Google Scholar 

  52. Lanza, F. et al. Epinephrine potentiates human platelet activation but is not an aggregating agent. Am. J. Physiol. 255, H1276–H1288 (1988).

    CAS  PubMed  Google Scholar 

  53. Williams, M. S., Kickler, T. S., Vaidya, D., Ng'alla, L. S. & Bush, D. E. Evaluation of platelet function in aspirin treated patients with CAD. J. Thromb. Thrombolysis. 21, 241–247 (2006).

    CAS  PubMed  Google Scholar 

  54. Kambayashi, J. et al. Prevalence of impaired responsiveness to epinephrine in platelets among Japanese. Thromb. Res. 81, 85–90 (1996).

    CAS  PubMed  Google Scholar 

  55. Scrutton, M. C., Clare, K. A., Hutton, R. A. & Bruckdorfer, K. R. Depressed responsiveness to adrenaline in platelets from apparently normal human donors: a familial trait. Br. J. Haematol. 49, 303–314 (1981).

    CAS  PubMed  Google Scholar 

  56. Kattlove, H. & Gomez, M. H. Collagen-induced platelet aggregation: the role of adenine nucleotides and the release reaction. Thromb. Diath. Haemorrh. 34, 795–805 (1975).

    CAS  PubMed  Google Scholar 

  57. Moritz, M. W., Reimers, R. C., Baker, R. K., Sutera, S. P. & Joist, J. H. Role of cytoplasmic and releasable ADP in platelet aggregation induced by laminar shear stress. J. Lab. Clin. Med. 101, 537–544 (1983).

    CAS  PubMed  Google Scholar 

  58. Agarwal, S., Coakley, M., Reddy, K., Riddell, A. & Mallett, S. Quantifying the effect of antiplatelet therapy: a comparison of the platelet function analyzer (PFA-100) and modified thromboelastography (mTEG) with light transmission platelet aggregometry. Anesthesiology 105, 676–683 (2006).

    CAS  PubMed  Google Scholar 

  59. Alstrom, U., Tyden, H., Oldgren, J., Siegbahn, A. & Stahle, E. The platelet inhibiting effect of a clopidogrel bolus dose in patients on long-term acetylsalicylic acid treatment. Thromb. Res. 120, 353–359 (2007).

    PubMed  Google Scholar 

  60. Dyszkiewicz-Korpanty, A., Olteanu, H., Frenkel, E. P. & Sarode, R. M. Clopidogrel anti-platelet effect: an evaluation by optical aggregometry, impedance aggregometry, and the Platelet Function Analyzer (PFA-100). Platelets. 18, 491–496 (2007).

    CAS  PubMed  Google Scholar 

  61. Geiger, J. et al. Monitoring of clopidogrel action: comparison of methods. Clin. Chem. 51, 957–965 (2005).

    CAS  PubMed  Google Scholar 

  62. Kotzailias, N. et al. Clopidogrel-induced platelet inhibition cannot be detected by the platelet function analyzer-100 system in stroke patients. J. Stroke Cerebrovasc. Dis. 16, 199–202 (2007).

    PubMed  Google Scholar 

  63. Paniccia, R. et al. Different methodologies for evaluating the effect of clopidogrel on platelet function in high-risk coronary artery disease patients. J. Thromb. Haemost. 5, 1839–1847 (2007).

    CAS  PubMed  Google Scholar 

  64. Holmes, M. B., Sobel, B. E. & Schneider, D. J. Variable responses to inhibition of fibrinogen binding induced by tirofiban and eptifibatide in blood from healthy subjects. Am. J. Cardiol. 84, 203–207 (1999).

    CAS  PubMed  Google Scholar 

  65. Jaremo, P., Lindahl, T. L., Fransson, S. G. & Richter, A. Individual variations of platelet inhibition after loading doses of clopidogrel. J. Intern. Med. 252, 233–238 (2002).

    CAS  PubMed  Google Scholar 

  66. Patel, P., Gonzalez, R., Dokainish, H. & Lakkis, N. Impact of adenosine diphosphate and calcium chelation on platelet aggregation testing in patients receiving clopidogrel therapy. J. Am. Coll. Cardiol. 47, 464–465 (2006).

    PubMed  Google Scholar 

  67. Michelson, A. D. et al. Evidence that pre-existent variability in platelet response to ADP accounts for 'clopidogrel resistance'. J. Thromb. Haemost. 5, 75–81 (2007).

    CAS  PubMed  Google Scholar 

  68. Ataullakhanov, F. I., Pohilko, A. V., Sinauridze, E. I. & Volkova, R. I. Calcium threshold in human plasma clotting kinetics. Thromb. Res. 75, 383–394 (1994).

    CAS  PubMed  Google Scholar 

  69. Kirchhofer, D., Tschopp, T. B., Steiner, B. & Baumgartner, H. R. Role of collagen-adherent platelets in mediating fibrin formation in flowing whole blood. Blood 86, 3815–3822 (1995).

    CAS  PubMed  Google Scholar 

  70. Panes, O. et al. Human platelets synthesize and express functional tissue factor. Blood 109, 5242–5250 (2007).

    CAS  PubMed  Google Scholar 

  71. Viisoreanu, D. & Gear, A. Effect of physiologic shear stresses and calcium on agonist-induced platelet aggregation, secretion, and thromboxane A2 formation. Thromb. Res. 120, 885–892 (2007).

    CAS  PubMed  Google Scholar 

  72. Leon, C. et al. Platelet ADP receptors contribute to the initiation of intravascular coagulation. Blood 103, 594–600 (2004).

    CAS  PubMed  Google Scholar 

  73. Wagner, W. R. & Hubbell, J. A. Evidence for a role in thrombus stabilization for thromboxane A2 in human platelet deposition on collagen. J. Lab. Clin. Med. 119, 690–697 (1992).

    CAS  PubMed  Google Scholar 

  74. Ratnatunga, C. P., Edmondson, S. F., Rees, G. M. & Kovacs, I. B. High-dose aspirin inhibits shear-induced platelet reaction involving thrombin generation. Circulation 85, 1077–1082 (1992).

    CAS  PubMed  Google Scholar 

  75. Undas, A., Brummel-Ziedins, K. E. & Mann, K. G. Antithrombotic properties of aspirin and resistance to aspirin: beyond strictly antiplatelet actions. Blood 109, 2285–2292 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wallen, N. H. & Ladjevardi, M. Influence of low- and high-dose aspirin treatment on thrombin generation in whole blood. Thromb. Res. 92, 189–194 (1998).

    CAS  PubMed  Google Scholar 

  77. Dorsam, R. T., Tuluc, M. & Kunapuli, S. P. Role of protease-activated and ADP receptor subtypes in thrombin generation on human platelets. J. Thromb. Haemost. 2, 804–812 (2004).

    CAS  PubMed  Google Scholar 

  78. van der Meijden, P. E. et al. Platelet P2Y12 receptors enhance signalling towards procoagulant activity and thrombin generation. A study with healthy subjects and patients at thrombotic risk. Thromb. Haemost. 93, 1128–1136 (2005).

    CAS  PubMed  Google Scholar 

  79. Frelinger, A. L. III. et al. The active metabolite of prasugrel inhibits adenosine diphosphate- and collagen-stimulated platelet procoagulant activities. J. Thromb. Haemost. 6, 359–365 (2008).

    CAS  PubMed  Google Scholar 

  80. Roald, H. E. et al. Clopidogrel—a platelet inhibitor which inhibits thrombogenesis in non-anticoagulated human blood independently of the blood flow conditions. Thromb. Haemost. 71, 655–662 (1994).

    CAS  PubMed  Google Scholar 

  81. Zimmermann, N. & Hohlfeld, T. Clinical implications of aspirin resistance. Thromb. Haemost. 100, 379–390 (2008).

    CAS  PubMed  Google Scholar 

  82. Gori, A. M. et al. Incidence and clinical impact of dual nonresponsiveness to aspirin and clopidogrel in patients with drug-eluting stents. J. Am. Coll. Cardiol. 52, 734–739 (2008).

    CAS  PubMed  Google Scholar 

  83. Mega, J. L. et al. Cytochrome P450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360, 354–362 (2009).

    CAS  PubMed  Google Scholar 

  84. Simon, T. et al. Genetic determinants of response to clopidogrel and cardiovascular events, N. Engl. J. Med. 360, 363–375 (2009).

    CAS  PubMed  Google Scholar 

  85. Collett, J. P. et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 373, 309–317 (2009).

    Google Scholar 

  86. Trenk, D. et al. Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J. Am. Coll. Cardiol. 51, 1925–1934 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana A. Gorog.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorog, D., Sweeny, J. & Fuster, V. Antiplatelet drug 'resistance'. Part 2: laboratory resistance to antiplatelet drugs—fact or artifact?. Nat Rev Cardiol 6, 365–373 (2009). https://doi.org/10.1038/nrcardio.2009.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing