Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Translational control of cell growth and malignancy by the CPEBs

Abstract

The cytoplasmic polyadenylation element binding proteins (CPEBs) associate with specific sequences in mRNA 3′ untranslated regions to promote translation. They do so by inducing cytoplasmic polyadenylation, which requires specialized poly(A) polymerases. Aberrant expression of these proteins correlates with certain types of cancer, indicating that cytoplasmic RNA 3′ end processing is important in the control of growth. Several CPEB-regulated mRNAs govern cell cycle progression, regulate senescence, establish cell polarity, and promote tumorigenesis and metastasis. In this Opinion article, we discuss the emerging evidence that indicates a key role for the CPEBs in cancer biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for CPEB1 regulation of polyadenylation-induced translation.
Figure 2: The CPEB and GLD family members in cancer.
Figure 3: CPEB1 control of cellular senescence.
Figure 4: CPEB1 and the control of cell polarity.

Similar content being viewed by others

References

  1. Groppo, R. & Richter, J. D. Translational control from head to tail. Curr. Opin. Cell Biol. 21, 444–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dever, T. E. Gene-specific regulation by general translation factors. Cell 108, 545–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  5. Wendel, H. G. et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 21, 3232–3237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richter, J. D. & Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Sonenberg, N. Translation factors as effectors of cell growth and tumorigenesis. Curr. Opin. Cell Biol. 5, 955–960 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Lazaris-Karatzas, A. et al. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev. 6, 1631–1642 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med. 10, 484–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Shamji, A. F., Nghiem, P. & Schreiber, S. L. Integration of growth factor and nutrient signaling. Mol. Cell 12, 271–280 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Guertin, D. A. & Sabatini, D. M. The Pharmacology of mTOR Inhibition. Sci. Signal. 2, pe24 (2009).

    Article  PubMed  Google Scholar 

  12. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617–627 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Stebbins-Boaz, L. E. et al. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 15, 2582–2592 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J. & Maller, J. L. Xenopus Polo-like kinase Plx1: a multifunctional mitotic kinase. Nature 24, 238–247 (2005).

    CAS  Google Scholar 

  16. Peng, A. & Maller, J. L. Serine/threonine phosphatases in the DNA damage response and cancer. Oncogene 29, 5977–5988 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Groisman, I., Jung, M. Y., Sarkissian, M., Cao, Q. & Richter, J. D. Translational control of the embryonic cell cycle. Cell 109, 473–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Groisman, I. et al. Control of cellular senescence by CPEB. Genes Dev. 20, 2701–2712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Novoa, I., Gallego, J., Ferreira, P. G. & Mendez, R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nature Cell Biol. 12, 447–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barnard, D. C., Ryan, K., Manley, J. L. & Richter, J. D. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119, 641–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cao, Q., Kim, J. H. & Richter, J. D. CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression. Nature Struct. Mol. Biol. 13, 1128–1134 (2006).

    Article  CAS  Google Scholar 

  23. Sarkissian, M. et al. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev. 18, 48–61 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J. H. & Richter, J. D. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell 24, 173–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J. H. & Richter, J. D. RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev. 21, 2571–2579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minshall, N. et al. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J. Biol. Chem. 282, 37389–37401 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Jung, M. Y., Lorenz, L. & Richter, J. D. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol. Cell. Biol. 26, 4277–4287 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mendez, R. et al. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. McGrew, L. L. & Richter, J. D. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF. EMBO J. 9, 3743–3751 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGrew, L. L. et al. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3, 803–815 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Fox, C. A. et al. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3, 2151–2162 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Kuge, H. & Richter, J. D. Cytoplasmic 3′ poly(A) addition induces 5′ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J. 14, 6301–6310 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuge, H. et al. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res. 26, 3208–3214 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lantz, V. et al. The Drosophila orb gene is predicted to encode sex-specific germline RNA-binding proteins and has localized transcripts in ovaries and early embryos. Development 115, 75–88 (1992).

    CAS  PubMed  Google Scholar 

  37. Lantz, V. et al. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 8, 598–613 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Christerson, L. B. & McKearin, D. M. orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev. 8, 614–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J. H. et al. Cytoplasmic polyadenylation element binding protein is a conserved target of tumor suppressor HRPT2/CDC73. Cell Death Differ. 17, 1551–15565 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, L. et al. A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419, 312–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Read, R. L. et al. Cytoplasmic poly(A) polymerases mediate cellular responses to S phase arrest. Proc. Natal. Acad. Sci. USA 99, 12079–12084 (2002).

    Article  CAS  Google Scholar 

  42. Saitoh, S. et al. Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell 109, 563–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kadyk, L. C. & Kimble, J. Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125, 1803–1813 (1998).

    CAS  PubMed  Google Scholar 

  44. Tay, J., Hodgman, R. & Richter, J. D. The Control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev. Biol. 221, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Tay, J. et al. Regulated CPEB phosphorylation during meiotic progression suggests a mechanism for temporal control of maternal mRNA translation. Genes Dev. 17, 1457–1462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burns, D. M. & Richter, J. D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 22, 3449–3460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Udagawa, T. et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol. Cell 47, 253–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burns, D. M., D'Ambrogio, A., Nottrott, S. & Richter, J. D. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell. Biol. 2, 521–529 (2001).

    Article  CAS  Google Scholar 

  50. Huang, Y. S., Kan, M. C., Lin, C. L. & Richter, J. D. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 25, 4865–4876 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Igea, A. et al. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 29, 2182–2193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, P. J. & Huang, Y. S. CPEB2–eEF2 interaction impedes HIF-1α RNA translation. EMBO J. 31, 959–971 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hosoda, N. et al. Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J. 30, 1311–1323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pavlopoulos, E. et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147, 1369–1383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ortiz-Zapater, E. et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nature Med. 18, 83–90 (2011).

    Article  PubMed  CAS  Google Scholar 

  56. Groppo, R. & Richter, J. D. CPEB control of NF- B nuclear localization and interleukin-6 production mediates cellular senescence. Mol. Cell. Biol. 31, 2707–2714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rhodes, D. R. et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tay, J. & Richter, J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell 1, 201–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nature Rev. Cancer 10, 254–266 (2010).

    Article  CAS  Google Scholar 

  61. Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 23, 433–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. D'Ambrogio, A. et al. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. 2, 1537–1345 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piqué, M., López, J. M., Foissac, S., Guigó, R. & Mendez, R. A. Combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    Article  PubMed  CAS  Google Scholar 

  65. Belloc, E. & Méndez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452, 1017–1021 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  PubMed  Google Scholar 

  67. Evan, G. I. & d'Adda di Fagagna, F. Cellular senescence: hot or what? Mol. Cell 19, 25–31 (2009).

    CAS  Google Scholar 

  68. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    Article  CAS  Google Scholar 

  70. Chen, M., David, C. J. & Manley, J. L. Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nature Struct. Mol. Biol. 19, 346–354 (2012).

    Article  CAS  Google Scholar 

  71. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, C. L., Evans, V., Shen, S., Xing, Y. & Richter, J. D. The nuclear experience of CPEB: implications for RNA processing and translational control. RNA 16, 338–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Prieur, A. & Peeper, D. S. Cellular senescence in vivo: a barrier to tumorigenesis. Curr. Opin. Cell Biol. 20, 150–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jing, H. et al. Opposing roles of NF- B in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev. 25, 2137–2146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nagaoka, K., Udagawa, T. & Richter, J. D. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nature Commun. 3, 675 (2012).

    Article  CAS  Google Scholar 

  80. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McCaffrey, L. M., Montalbano, J., Mihai, C. & Macara, I. G. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 22, 601–614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sullivan, N. J. et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940–2947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nairismägi, M. L. et al. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene 31, 4960–4966 (2012).

    Article  PubMed  CAS  Google Scholar 

  84. Huang, Y. S. Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17, 638–653 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, H. et al. Dexamethasone as a chemosensitizer for breast cancer chemotherapy: potentiation of the antitumor activity of adriamycin, modulation of cytokine expression, and pharmacokinetics. Int. J. Oncol. 30, 947–953 (2007).

    CAS  PubMed  Google Scholar 

  86. McClellan, M. et al. An accelerated pathway for targeted cancer therapies. Nature Rev. Drug Discov. 10, 79–80 (2011).

    Article  CAS  Google Scholar 

  87. Ule, J. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. König, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein–RNA interactions: new genomic technologies and perspectives. Nature Rev. Genet. 13, 77–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protoc. 7, 1534–1550 (2012).

    Article  CAS  Google Scholar 

  90. Du, L. & Richter, J. D. Activity-dependent polyadenylation in neurons. RNA 11, 1340–1347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beilharz, T. H. & Preiss, T. Polyadenylation state microarray (PASTA) analysis. Methods Mol. Biol. 759, 133–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Page, R. D. M. in Current Protocols in Bioinformatics (John Wiley & Sons, Inc., USA).

Download references

Acknowledgements

The authors thank O. Rando for help with the bioinformatic analysis. K.N. was supported by JSPS postdoctoral fellowships for Research Abroad. Work in the authors' laboratory was supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel D. Richter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary information S1 (table)

Meta-analysis in Figure 2 (PDF 203 kb)

Glossary

Cytoplasmic polyadenylation element binding protein

(CPEB). All CPEB proteins contain two RNA recognition motifs and two zinc fingers. CPEB1 binds to the cytoplasmic polyadenylation element, a U-rich structure in mRNA 3′ untranslated regions and recruits a complex of proteins that mediate polyadenylation and translation. CPEB24 may also bind U-rich structures, but probably with different affinities from those of CPEB1.

Eukaryotic translation initiation factor 4F

(eIF4F). A protein complex composed of eIF4A, eIF4E and eIF4G. eIF4A is an RNA helicase, eIF4E binds the cap, and eIF4G, through interaction with the multisubunit initiation factor eIF3, recruits the 40S ribosomal subunit to the 5′ end of the mRNA.

Germline development 2

(GLD2). A non-canonical poly(A) polymerase that associates with CPEB1 to polyadenylate mRNAs in the cytoplasm. Independently from CPEBs, GLD2 also 3′ monoadenylates and stabilizes specific miRNAs.

GLD4

A paralogue of GLD2. In human fibroblasts, it associates with CPEB1 to polyadenylate TP53 mRNA.

m7GpppG

Also known as the cap. The structure found at the 5′ end of all nuclear-encoded eukaryotic mRNAs. It consists of a 7-methyl-guanine nucleotide connected to the mRNA via an unusual 5′ to 5′ linkage. The cap ensures mRNA stability and is essential for translation except for those messengers that use an internal ribosome entry site.

Senescence

A phenomenon by which primary cells exit the cell cycle and undergo several biochemical and morphological changes. Senescence can be induced by oncogenes, changes in substrate adhesion, alterations in oxygen tension and many other parameters; it is a mechanism of tumour suppression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Ambrogio, A., Nagaoka, K. & Richter, J. Translational control of cell growth and malignancy by the CPEBs. Nat Rev Cancer 13, 283–290 (2013). https://doi.org/10.1038/nrc3485

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3485

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer