Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ERBB network: at last, cancer therapy meets systems biology

Abstract

Although it is broadly agreed that the improved treatment of patients with cancer will depend on a deeper molecular understanding of the underlying pathogenesis, only a few examples are already available. This Timeline article focuses on the ERBB (also known as HER) network of receptor tyrosine kinases (RTKs), which exemplifies how a constant dialogue between basic research and medical oncology can translate into both a sustained pipeline of novel drugs and ways to overcome acquired treatment resistance in patients. We track the key early discoveries that linked this RTK family to oncogenesis, the course of pioneering clinical research and their merger into a systems-biology framework that is likely to inspire further generations of effective therapeutic strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Family portrait: functional and structural features that are unique to each receptor.
Figure 2: ERBB mutations in cancer.
Figure 3: Drug flood: antibodies and small molecules intercepting ERBB signalling.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature Rev. Mol. Cell Biol. 12, 104–117 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Hynes, N. E. & MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol. 21, 177–184 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Baselga, J. & Swain, S. M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature Rev. Cancer 9, 463–475 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Cohen, S. & Levi-Montalcini, R. Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res. 17, 15–20 (1957).

    CAS  PubMed  Google Scholar 

  5. 5

    Savage, C. R. Jr, Inagami, T. & Cohen, S. The primary structure of epidermal growth factor. J. Biol. Chem. 247, 7612–7621 (1972).

    CAS  PubMed  Google Scholar 

  6. 6

    Cohen, S. & Carpenter, G. Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl Acad. Sci. USA 72, 1317–1321 (1975).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Scher, C. D. & Todaro, G. J. Selective growth of human neoplastic cells in medium lacking serum growth factor. Exp. Cell Res. 68, 479–481 (1971).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Sporn, M. B. & Todaro, G. J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303, 878–880 (1980).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Todaro, G. J., De Larco, J. E. & Cohen, S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature 264, 26–31 (1976).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Roberts, A. B. et al. Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc. Natl Acad. Sci. USA 77, 3494–3498 (1980).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Carpenter, G. & Cohen, S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J. Cell Biol. 71, 159–171 (1976).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Cohen, S., Fava, R. A. & Sawyer, S. T. Purification and characterization of epidermal growth factor receptor/protein kinase from normal mouse liver. Proc. Natl Acad. Sci. USA 79, 6237–6241 (1982).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Hunter, T. & Cooper, J. A. Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell 24, 741–752 (1981).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Schreiber, A. B., Lax, I., Yarden, Y., Eshhar, Z. & Schlessinger, J. Monoclonal antibodies against receptor for epidermal growth factor induce early and delayed effects of epidermal growth factor. Proc. Natl Acad. Sci. USA 78, 7535–7539 (1981).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Downward, J. et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307, 521–527 (1984).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Waterfield, M. D. et al. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304, 35–39 (1983).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418–425 (1984).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Hendler, F. J. & Ozanne, B. W. Human squamous cell lung cancers express increased epidermal growth factor receptors. J. Clin. Invest. 74, 647–651 (1984).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Libermann, T. A. et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313, 144–147 (1985).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Sugawa, N., Ekstrand, A. J., James, C. D. & Collins, V. P. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl Acad. Sci. USA 87, 8602–8606 (1990).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Schechter, A. L. et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312, 513–516 (1984).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Bargmann, C. I., Hung, M. C. & Weinberg, R. A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657 (1986).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Yamamoto, T. et al. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 319, 230–234 (1986).

    CAS  Article  Google Scholar 

  24. 24

    Kraus, M. H., Popescu, N. C., Amsbaugh, S. C. & King, C. R. Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J. 6, 605–610 (1987).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Schechter, A. L. et al. The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229, 976–978 (1985).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Bargmann, C. I., Hung, M. C. & Weinberg, R. A. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319, 226–230 (1986).

    CAS  Article  Google Scholar 

  27. 27

    Coussens, L. et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139 (1985).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Di Fiore, P. P. et al. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51, 1063–1070 (1987).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Di Fiore, P. P. et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237, 178–182 (1987).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Hudziak, R. M., Schlessinger, J. & Ullrich, A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl Acad. Sci. USA 84, 7159–7163 (1987).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Hung, M. C., Yan, D. H. & Zhao, X. Y. Amplification of the proto-neu oncogene facilitates oncogenic activation by a single point mutation. Proc. Natl Acad. Sci. USA 86, 2545–2548 (1989).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    van de Vijver, M. J. et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N. Engl. J. Med. 319, 1239–1245 (1988).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Lu, J. et al. 14-3-3ζ Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 16, 195–207 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Yarden, Y. & Weinberg, R. A. Experimental approaches to hypothetical hormones: detection of a candidate ligand of the neu protooncogene. Proc. Natl Acad. Sci. USA 86, 3179–3183 (1989).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Wen, D. et al. Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69, 559–572 (1992).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Holmes, W. E. et al. Identification of heregulin, a specific activator of p185erbB2. Science 256, 1205–1210 (1992).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Peles, E. et al. Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships. EMBO J. 12, 961–971 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Yarden, Y. & Schlessinger, J. The EGF receptor kinase: evidence for allosteric activation and intramolecular self-phosphorylation. Ciba Found. Symp. 116, 23–45 (1985).

    CAS  PubMed  Google Scholar 

  41. 41

    Yarden, Y. & Schlessinger, J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26, 1443–1451 (1987).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Kokai, Y. et al. Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell 58, 287–292 (1989).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Goldman, R., Levy, R. B., Peles, E. & Yarden, Y. Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochemistry 29, 11024–11028 (1990).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Yarden, Y. & Ullrich, A. Growth factor receptor tyrosine kinases. Annu. Rev. Biochem. 57, 443–478 (1988).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Plowman, G. D. et al. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc. Natl Acad. Sci. USA 87, 4905–4909 (1990).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Plowman, G. D. et al. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc. Natl Acad. Sci. USA 90, 1746–1750 (1993).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Kraus, M. H., Issing, W., Miki, T., Popescu, N. C. & Aaronson, S. A. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc. Natl Acad. Sci. USA 86, 9193–9197 (1989).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Knighton, D. R. et al. Structural features that specify tyrosine kinase activity deduced from homology modeling of the epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 90, 5001–5005 (1993).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A. & Carraway, K. L. Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl Acad. Sci. USA 91, 8132–8136 (1994).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Carraway, K. L. & Cantley, L. C. A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78, 5–8 (1994).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Pinkas-Kramarski, R. et al. Differential expression of NDF/neuregulin receptors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal differentiation. Oncogene 15, 2803–2815 (1997).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Riese, D. J., van Raaij, T. M., Plowman, G. D., Andrews, G. C. & Stern, D. F. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol. Cell. Biol. 15, 5770–5776 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Tzahar, E. et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 16, 5276–5287 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Karunagaran, D. et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 15, 254–264 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Graus-Porta, D., Beerli, R. R., Daly, J. M. & Hynes, N. E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 16, 1647–1655 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Holbro, T. et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl Acad. Sci. USA 100, 8933–8938 (2003).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Sliwkowski, M. X. et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J. Biol. Chem. 269, 14661–14665 (1994).

    CAS  PubMed  Google Scholar 

  58. 58

    Alimandi, M. et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 10, 1813–1821 (1995).

    CAS  PubMed  Google Scholar 

  59. 59

    Wallasch, C. et al. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 14, 4267–4275 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Meyer, D. & Birchmeier, C. Distinct isoforms of neuregulin are expressed in mesenchymal and neuronal cells during mouse development. Proc. Natl Acad. Sci. USA 91, 1064–1068 (1994).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Levi, A. D. et al. The influence of heregulins on human Schwann cell proliferation. J. Neurosci. 15, 1329–1340 (1995).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Sato, J. D. et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1, 511–529 (1983).

    CAS  PubMed  Google Scholar 

  64. 64

    Peng, D. et al. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res. 56, 3666–3669 (1996).

    CAS  PubMed  Google Scholar 

  65. 65

    Aboud-Pirak, E. et al. Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J. Natl Cancer Inst. 80, 1605–1611 (1988).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Baselga, J. The EGFR as a target for anticancer therapy—focus on cetuximab. Eur. J. Cancer 37, S16–S22 (2001).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Fiske, W. H. et al. Efficacy of cetuximab in the treatment of Menetrier's disease. Sci. Transl. Med. 1, 8ra18 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70

    Drebin, J. A., Link, V. C., Stern, D. F., Weinberg, R. A. & Greene, M. I. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41, 697–706 (1985).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Hudziak, R. M. et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell. Biol. 9, 1165–1172 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Carter, P. et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA 89, 4285–4289 (1992).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Park, S. et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160–170 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Stagg, J. et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl Acad. Sci. USA 108, 7142–7147 (2011).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744 (1996).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Hortobagyi, G. N. Trastuzumab in the treatment of breast cancer. N. Engl. J. Med. 353, 1734–1736 (2005).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Schoeberl, B. et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 70, 2485–2494 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Umezawa, H. et al. Studies on a new epidermal growth factor-receptor kinase inhibitor, erbstatin, produced by MH435-hF3. J. Antibiot. 39, 170–173 (1986).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Yaish, P., Gazit, A., Gilon, C. & Levitzki, A. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 242, 933–935 (1988).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J. Clin. Oncol. 21, 2237–2246 (2003).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Cohen, M. H., Williams, G. A., Sridhara, R., Chen, G. & Pazdur, R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 8, 303–306 (2003).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Thatcher, N. et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366, 1527–1537 (2005).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Cohen, M. H., Johnson, J. R., Chen, Y. F., Sridhara, R. & Pazdur, R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 10, 461–466 (2005).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Miller, V. A. et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J. Clin. Oncol. 22, 1103–1109 (2004).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Sordella, R., Bell, D. W., Haber, D. A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167 (2004).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Stephens, P. et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004).

    CAS  Article  Google Scholar 

  91. 91

    Prickett, T. D. et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nature Genet. 41, 1127–1132 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Soung, Y. H. et al. Somatic mutations of the ERBB4 kinase domain in human cancers. Int. J. Cancer 118, 1426–1429 (2006).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Rusnak, D. W. et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res. 61, 7196–7203 (2001).

    CAS  PubMed  Google Scholar 

  94. 94

    Spector, N. L. et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol. 23, 2502–2512 (2005).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Ryan, Q. et al. FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist 13, 1114–1119 (2008).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Schweitzer, R. & Shilo, B. Z. A thousand and one roles for the Drosophila EGF receptor. Trends Genet. 13, 191–196 (1997).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotech. 20, 370–375 (2002).

    Article  Google Scholar 

  99. 99

    Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    CAS  Article  Google Scholar 

  100. 100

    Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    CAS  Article  Google Scholar 

  103. 103

    Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst .Biol. 1, 2005.0010 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  104. 104

    Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181 (1999).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Dikic, I. & Giordano, S. Negative receptor signalling. Curr. Opin. Cell Biol. 15, 128–135 (2003).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Haj, F. G., Verveer, P. J., Squire, A., Neel, B. G. & Bastiaens, P. I. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295, 1708–1711 (2002).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Lin, S. Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biol. 3, 802–808 (2001).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Ni, C. Y. Murphy, M. P., Golde, T. E. & Carpenter, G. γ-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Fiorentino, L. et al. Inhibition of ErbB-2 mitogenic and transforming activity by RALT, a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain. Mol. Cell. Biol. 20, 7735–7750 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112

    Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet. 39, 503–512 (2007).

    CAS  Article  Google Scholar 

  113. 113

    Garrett, T. P. et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell 110, 763–773 (2002).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Ferguson, K. M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Garrett, T. P. et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell 11, 495–505 (2003).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Cho, H. S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421, 756–760 (2003).

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Cho, H. S. & Leahy, D. J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330–1333 (2002).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Bouyain, S., Longo, P. A., Li, S., Ferguson, K. M. & Leahy, D. J. The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand. Proc. Natl Acad. Sci. USA 102, 15024–15029 (2005).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Greenfield, C. et al. Epidermal growth factor binding induces a conformational change in the external domain of its receptor. EMBO J. 8, 4115–4123 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317–328 (2004).

    CAS  PubMed  Article  Google Scholar 

  122. 122

    Zhang, X., Gureasko, J., Shen, K., Cole, P. A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Jura, N., Shan, Y., Cao, X., Shaw, D. E. & Kuriyan, J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl Acad. Sci. USA 106, 21608–21613 (2009).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Shi, F. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl Acad. Sci. USA 107, 7692–7697 (2010).

    CAS  Article  Google Scholar 

  125. 125

    Telesco, S. E., Shih, A. J., Jia, F. & Radhakrishnan, R. A multiscale modeling approach to investigate molecular mechanisms of pseudokinase activation and drug resistance in the HER3/ErbB3 receptor tyrosine kinase signaling network. Mol. Biosyst. 7, 2066–2080 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126

    Jura, N. et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137, 1293–1307 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  127. 127

    Red Brewer, M. et al. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34, 641–651 (2009).

    PubMed  Article  CAS  Google Scholar 

  128. 128

    Bocharov, E. V. et al. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J. Biol. Chem. 283, 6950–6956 (2008).

    CAS  PubMed  Article  Google Scholar 

  129. 129

    Mi, L. Z. et al. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Nature Struct. Mol. Biol. 18, 984–989 (2011).

    CAS  Article  Google Scholar 

  130. 130

    Amit, I., Wides, R. & Yarden, Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol. Syst. Biol. 3, 151 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N. & Esteva, F. J. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clin. Pract. Oncol. 3, 269–280 (2006).

    CAS  Article  Google Scholar 

  132. 132

    Benvenuti, S. et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 67, 2643–2648 (2007).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Di Fiore, F. et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br. J. Cancer 96, 1166–1169 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134

    Khambata-Ford, S. et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25, 3230–3237 (2007).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Garrett, J. T. & Arteaga, C. L. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol. Ther. 11, 793–800 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136

    Rexer, B. N., Engelman, J. A. & Arteaga, C. L. Overcoming resistance to tyrosine kinase inhibitors: lessons learned from cancer cells treated with EGFR antagonists. Cell Cycle 8, 18–22 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137

    Montagut, C. et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nature Med. 18, 221–223 (2012).

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 99, 628–638 (2007).

    CAS  PubMed  Article  Google Scholar 

  139. 139

    Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140

    Yonesaka, K. et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. 3, 99ra86 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. 141

    Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142

    Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    CAS  PubMed  Article  Google Scholar 

  143. 143

    Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    CAS  Article  Google Scholar 

  145. 145

    Liu, L. et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res. 69, 6871–6878 (2009).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Xia, W. et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc. Natl Acad. Sci. USA 103, 7795–7800 (2006).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Robinson, M. K. et al. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br. J. Cancer 99, 1415–1425 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148

    Schaefer, G. et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 20, 472–486 (2011).

    CAS  Article  PubMed  Google Scholar 

  149. 149

    Weinstein, I. B. Cancer. Addiction to oncogenes- the Achilles heal of cancer. Science 297, 63–64 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    Stelling, J. et al. Robustness of cellular functions. Cell 118, 675–685 (2004).

    CAS  PubMed  Article  Google Scholar 

  151. 151

    Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    CAS  Article  PubMed  Google Scholar 

  152. 152

    Baselga, J. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366, 109–119 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153

    Blackwell, K. L. et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol. 28, 1124–1130 (2010).

    CAS  PubMed  Article  Google Scholar 

  154. 154

    Carpenter, G. & Cohen, S. Epidermal growth factor. Annu. Rev. Biochem. 48, 193–216 (1979).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Klapper, L. N. et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc. Natl Acad. Sci. USA 96, 4995–5000 (1999).

    CAS  PubMed  Article  Google Scholar 

  156. 156

    Kitano, H. Biological robustness. Nature Rev. Genet. 5, 826–837 (2004).

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Kholodenko, B. N., Hancock, J. F. & Kolch, W. Signalling ballet in space and time. Nature Rev. Mol. Cell Biol. 11, 414–426 (2010).

    CAS  Article  Google Scholar 

  158. 158

    Lee-Hoeflich, S. T. et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 68, 5878–5887 (2008).

    CAS  PubMed  Article  Google Scholar 

  159. 159

    Junttila, T. T. et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15, 429–440 (2009).

    CAS  PubMed  Article  Google Scholar 

  160. 160

    Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    CAS  PubMed  Article  Google Scholar 

  161. 161

    Pettersen, E. F. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Article  Google Scholar 

  162. 162

    Schulze, W. X., Deng, L. & Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, 2005.0008 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. 163

    Barker, A. J. et al. Studies leading to the identification of ZD1839 (Iressa): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 11, 1911–1914 (2001).

    CAS  PubMed  Article  Google Scholar 

  164. 164

    Masui, H. et al. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res. 44, 1002–1007 (1984).

    CAS  PubMed  Google Scholar 

  165. 165

    Niculescu-Duvaz, I. Trastuzumab emtansine, an antibody-drug conjugate for the treatment of HER2+ metastatic breast cancer. Curr. Opin. Mol. Ther. 12, 350–360 (2010).

    CAS  PubMed  Google Scholar 

  166. 166

    Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379, 633–640 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167

    Modi, S. et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin. Cancer Res. 17, 5132–5139 (2011).

    CAS  PubMed  Article  Google Scholar 

  168. 168

    Li, N., Nguyen, H. H., Byrom, M. & Ellington, A. D. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 6, e20299 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169

    Lindzen, M. et al. A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis. Oncogene 21 Nov 2011 (doi:10.1038/onc.2011.518).

  170. 170

    Lindzen, M., Lavi, S., Leitner, O. & Yarden, Y. Tailored cancer immunotherapy using combinations of chemotherapy and a mixture of antibodies against EGF-receptor ligands. Proc. Natl Acad. Sci. USA 107, 12559–12563 (2010).

    CAS  PubMed  Article  Google Scholar 

  171. 171

    Cohen, S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 237, 1555–1562 (1962).

    CAS  PubMed  Google Scholar 

  172. 172

    Todaro, G. J., Fryling, C. & De Larco, J. E. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. Natl Acad. Sci. USA 77, 5258–5262 (1980).

    CAS  PubMed  Article  Google Scholar 

  173. 173

    Reynolds, F. H. Jr, Todaro, G. J., Fryling, C. & Stephenson, J. R. Human transforming growth factors induce tyrosine phosphorylation of EGF receptors. Nature 292, 259–262 (1981).

    CAS  PubMed  Article  Google Scholar 

  174. 174

    Libermann, T. A. et al. Expression of epidermal growth factor receptors in human brain tumors. Cancer Res. 44, 753–760 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Semba, K., Kamata, N., Toyoshima, K. & Yamamoto, T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc. Natl Acad. Sci. USA 82, 6497–6501 (1985).

    CAS  PubMed  Article  Google Scholar 

  176. 176

    King, C. R., Kraus, M. H. & Aaronson, S. A. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229, 974–976 (1985).

    CAS  PubMed  Article  Google Scholar 

  177. 177

    Wada, T., Qian, X. L. & Greene, M. I. Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell 61, 1339–1347 (1990).

    CAS  PubMed  Article  Google Scholar 

  178. 178

    Peles, E. et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69, 205–216 (1992).

    CAS  PubMed  Article  Google Scholar 

  179. 179

    Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    CAS  PubMed  Article  Google Scholar 

  180. 180

    Pollack, V. A. et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther. 291, 739–748 (1999).

    CAS  PubMed  Google Scholar 

  181. 181

    Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    CAS  PubMed  Article  Google Scholar 

  182. 182

    Lievre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66, 3992–3995 (2006).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Eisenstein, M. Feldman, Y. Mosesson, S. Lavi, W. Koestller and G. Tarcic for their help. They apologize to those colleagues whose work is not cited owing to space limitations. The authors' research is funded by the US National Cancer Institute, the European Research Council, the Seventh Framework Program of the European Commission, the German–Israeli Project Cooperation (DIP), the Israel Cancer Research Fund and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. Y.Y. is the incumbent of the Harold and Zelda Goldenberg Professorial Chair.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yosef Yarden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yarden, Y., Pines, G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12, 553–563 (2012). https://doi.org/10.1038/nrc3309

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing