Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing transposons for cancer gene discovery

Key Points

  • Transposon-based insertional mutagenesis (TIM) can be used to model many types of cancer in mice and facilitates the rapid identification of genes that cause cancer.

  • Comparison of the genes mutated by TIM with the genes mutated in human cancer can help to discriminate between those that are driver and those that are passenger mutations in human cancer.

  • TIM can identify new human cancer genes that have so far been missed in human cancer genome sequencing studies, that are difficult to identify because they are epigenetically regulated and that are located in large amplified or deleted regions.

  • TIM induces tumours at all stages of tumour progression, sometimes in a single animal. By identifying the genes mutated by TIM at each stage of progression it might be possible to determine the order in which the mutations were acquired and whether they are involved in tumour initiation, progression and metastasis.

  • Mouse cancer models induced by TIM provide a plethora of new models for studying the biology of cancer and for testing new cancer therapeutics before they go into the clinic.

Abstract

Recently, it has become possible to mobilize the Tc1/mariner transposon, Sleeping Beauty (SB), in mouse somatic cells at frequencies high enough to induce cancer. Tumours result from SB insertional mutagenesis of cancer genes, thus facilitating the identification of the genes and signalling pathways that drive tumour formation. A conditional SB transposition system has also been developed that makes it possible to limit where SB mutagenesis occurs, providing a means to selectively model many types of human cancer. SB mutagenesis has already identified a large collection of known cancer genes in addition to a plethora of new candidate cancer genes and potential drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SB structure and mechanism of transposition.
Figure 2: T2/Onc2 can deregulate the expression of oncogenes or inactivate expression of tumour suppressor genes.
Figure 3: High copy T2/Onc2 transgenic lines.
Figure 4: Two Rosa26 SB transposase knock-in alleles.
Figure 5: Barcoded splinkerette PCR amplification and deep sequencing.
Figure 6: Breeding scheme used for mobilizing SB in a sensitized mouse genetic background.

Similar content being viewed by others

References

  1. Imai, K. & Takaoka, A. Comparing antibody and small-molecule therapies for cancer. Nature Rev. Cancer 6, 714–727 (2006).

    Article  CAS  Google Scholar 

  2. Copeland, N. G. & Jenkins, N. A. Deciphering the genetic landscape of cancer-from genes to pathways. Trends Genet. 25, 455–462 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Forrest, W. F. & Cavet, G. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317, 1500 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Getz, G. et al. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317, 1500 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Rubin, A. F. & Green, P. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317, 1500 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kool, J. & Berns, A. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nature Rev. Cancer 9, 389–399 (2009). This paper reviews the advantages and the limitations of retroviral insertional mutagenesis in mice for identifying genes and signalling pathways that are important for cancer.

    Article  CAS  Google Scholar 

  7. Akagi, K., Suzuki, T., Stephens, R. M., Jenkins, N. A. & Copeland, N. G. RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res. 32, D523–D527 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitchell, R. S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, e234 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wu, X., Li, Y., Crise, B. & Burgess, S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Neil, J. C. & Cameron, E. R. Retroviral insertion sites and cancer: fountain of all knowledge? Cancer Cell 2, 253–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Plasterk, R. H., Izsvak, Z. & Ivics, Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Lohe, A. R., Moriyama, E. N., Lidholm, D. A. & Hartl, D. L. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12, 62–72 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Izsvak, Z., Ivics, Z. & Hackett, P. B. Repetitive elements and their genetic applications in zebrafish. Biochem. Cell Biol. 75, 507–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ivics, Z., Izsvak, Z., Minter, A. & Hackett, P. B. Identification of functional domains and evolution of Tc1-like transposable elements. Proc. Natl Acad. Sci. USA 93, 5008–5013 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zayed, H., Izsvak, Z., Walisko, O. & Ivics, Z. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol. Ther. 9, 292–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ivics, Z., Hackett, P. B., Plasterk, R. H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997). A landmark paper that constructed the first synthetic highly active transposon (SB) for use in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  17. Izsvak, Z., Ivics, Z. & Plasterk, R. H. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302, 93–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Yant, S. R. et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nature Genet. 25, 35–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dupuy, A. J. et al. Mammalian germ-line transgenesis by transposition. Proc. Natl Acad. Sci. USA 99, 4495–4499 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dupuy, A. J., Fritz, S. & Largaespada, D. A. Transposition and gene disruption in the male germline of the mouse. Genesis 30, 82–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Fischer, S. E., Wienholds, E. & Plasterk, R. H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl Acad. Sci. USA 98, 6759–6764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horie, K. et al. Efficient chromosomal transposition of a Tc1/mariner- like transposon Sleeping Beauty in mice. Proc. Natl Acad. Sci. USA 98, 9191–9196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zayed, H., Izsvak, Z., Khare, D., Heinemann, U. & Ivics, Z. The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucleic Acids Res. 31, 2313–2322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walisko, O. et al. Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1. Proc. Natl Acad. Sci. USA 103, 4062–4067 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Izsvak, Z. et al. Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. Mol. Cell 13, 279–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Yant, S. R. & Kay, M. A. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol. Cell. Biol. 23, 8505–8518 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikeda, R. et al. Sleeping beauty transposase has an affinity for heterochromatin conformation. Mol. Cell. Biol. 27, 1665–1676 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Yusa, K., Takeda, J. & Horie, K. Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol. Cell. Biol. 24, 4004–4018 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garrison, B. S., Yant, S. R., Mikkelsen, J. G. & Kay, M. A. Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol. Cell. Biol. 27, 8824–8833 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, C. W., Kren, B. T., Largaespada, D. A. & Steer, C. J. DNA methylation of Sleeping Beauty with transposition into the mouse genome. Genes Cells 10, 763–776 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Park, C. W., Park, J., Kren, B. T. & Steer, C. J. Sleeping Beauty transposition in the mouse genome is associated with changes in DNA methylation at the site of insertion. Genomics 88, 204–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Walsh, C. P. & Bestor, T. H. Cytosine methylation and mammalian development. Genes Dev. 13, 26–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, G. et al. Target-site preferences of Sleeping Beauty transposons. J. Mol. Biol. 346, 161–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Vigdal, T. J., Kaufman, C. D., Izsvak, Z., Voytas, D. F. & Ivics, Z. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J. Mol. Biol. 323, 441–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Yant, S. R. et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol. Cell. Biol. 25, 2085–2094 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carlson, C. M. et al. Transposon mutagenesis of the mouse germline. Genetics 165, 243–256 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horie, K. et al. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol. 23, 9189–9207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tower, J., Karpen, G. H., Craig, N. & Spradling, A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347–359 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G. & Jenkins, N. A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005). This was the first paper showing that SB transposon-based mutagenesis can induce cancer when mobilized in somatic cells of wild-type mice.

    Article  CAS  PubMed  Google Scholar 

  43. Geurts, A. M. et al. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol. Ther. 8, 108–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Cui, Z., Geurts, A. M., Liu, G., Kaufman, C. D. & Hackett, P. B. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J. Mol. Biol. 318, 1221–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Liang, Q., Kong, J., Stalker, J. & Bradley, A. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. Genesis 47, 404–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Zambrowicz, B. P. et al. Disruption of overlapping transcripts in the ROSA β geo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl Acad. Sci. USA 94, 3789–3794 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geurts, A. M. et al. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet. 2, e156 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J. & Largaespada, D. A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005). This was the first paper showing that SB transposon-based mutagenesis can identify genes involved in solid cancer when mobilized in somatic cells of sensitized mice.

    Article  CAS  PubMed  Google Scholar 

  51. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Seidel, C. et al. Alterations of cancer-related genes in soft tissue sarcomas: hypermethylation of RASSF1A is frequently detected in leiomyosarcoma and associated with poor prognosis in sarcoma. Int. J. Cancer 114, 442–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Collier, L. S. et al. Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res. 69, 8429–8437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rahrmann, E. P. et al. Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon-based somatic mutagenesis screen. Cancer Res. 69, 4388–4397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hawley, R. G., Fong, A. Z., Burns, B. F. & Hawley, T. S. Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J. Exp. Med. 176, 1149–1163 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Dupuy, A. J. et al. A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res. 69, 8150–8156 (2009). This paper describes the development of a modified SB transposon, T2/Onc3, which selectively induces epithelial tumours when mobilized in somatic cells of wild-type mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Keng, V. W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotech. 27, 264–274 (2009). This paper describes the development of a conditional transposition system that can be used to model many different kinds of human cancer in mice. This transposition system was also used in a proof-of-principle experiment to model HCC in mice.

    Article  CAS  Google Scholar 

  60. Starr, T. K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009). This paper describes the development of a conditional transposition system that can be used to model many different kinds of human cancer in mice. This transposition system was also used in a proof-of-principle experiment to model CRC in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. de Vries, A. et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc. Natl Acad. Sci. USA 99, 2948–2953 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bressac, B., Kew, M., Wands, J. & Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429–431 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Buendia, M. A. Genetics of hepatocellular carcinoma. Semin. Cancer Biol. 10, 185–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Boerner, J. L., Danielsen, A. & Maihle, N. J. Ligand-independent oncogenic signaling by the epidermal growth factor receptor: v-ErbB as a paradigm. Exp. Cell Res. 284, 111–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Chang, C. M. et al. A minor tyrosine phosphorylation site located within the CAIN domain plays a critical role in regulating tissue-specific transformation by erbB kinase. J. Virol. 69, 1172–1180 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Frederick, L., Wang, X. Y., Eley, G. & James, C. D. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 60, 1383–1387 (2000).

    CAS  PubMed  Google Scholar 

  69. Villanueva, A. et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135, 1972–1983 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Villanueva, A., Newell, P., Chiang, D. Y., Friedman, S. L. & Llovet, J. M. Genomics and signaling pathways in hepatocellular carcinoma. Semin. Liver Dis. 27, 55–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Salvi, A. et al. In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells. Int. J. Oncol. 31, 451–460 (2007).

    CAS  PubMed  Google Scholar 

  73. Takami, T. et al. Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Res. 67, 9844–9851 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Nakayama, K. et al. Homozygous deletion of MKK4 in ovarian serous carcinoma. Cancer Biol. Ther. 5, 630–634 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Su, G. H., Song, J. J., Repasky, E. A., Schutte, M. & Kern, S. E. Mutation rate of MAP2K4/MKK4 in breast carcinoma. Hum. Mutat. 19, 81 (2002).

    Article  PubMed  Google Scholar 

  76. Xin, W. et al. MAP2K4/MKK4 expression in pancreatic cancer: genetic validation of immunohistochemistry and relationship to disease course. Clin. Cancer Res. 10, 8516–8520 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Arsura, M. et al. Transient activation of NF-κB through a TAK1/IKK kinase pathway by TGF-β1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22, 412–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Anzola, M. Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J. Viral Hepat. 11, 383–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Beasley, R. P. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61, 1942–1956 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J. & Bell, B. P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol. 45, 529–538 (2006).

    Article  PubMed  Google Scholar 

  81. Yang, H. I. et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N. Engl. J. Med. 347, 168–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Mizuuchi, K. In vitro transposition of bacteriophage Mu: a biochemical approach to a novel replication reaction. Cell 35, 785–794 (1983).

    Article  CAS  PubMed  Google Scholar 

  83. de Wit, T. et al. Tagged mutagenesis by efficient Minos-based germ line transposition. Mol. Cell. Biol. 30, 68–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005). This paper shows that PB is a highly active transposon in mammalian cells and the mouse germ line and an excellent alternative transposition system to SB for insertional mutagenesis screens in mice.

    Article  CAS  PubMed  Google Scholar 

  85. Keng, V. W. et al. Efficient transposition of Tol2 in the mouse germline. Genetics 183, 1565–1573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, W. et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 105, 9290–9295 (2008).

    Article  CAS  Google Scholar 

  87. Smith, G. E., Summers, M. D. & Fraser, M. J. Production of human β interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3, 2156–2165 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fraser, M. J., Cary, L., Boonvisudhi, K. & Wang, H. G. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211, 397–407 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Fraser, M. J., Ciszczon, T., Elick, T. & Bauser, C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5, 141–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Cadinanos, J. & Bradley, A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res. 35, e87 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genet. 41, 753–761 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Grabundzija, I. et al. Comparative analysis of transposable element vector systems in human cells. Mol. Ther. 18, 1200–1209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chambraud, B., Berry, M., Redeuilh, G., Chambon, P. & Baulieu, E. E. Several regions of human estrogen receptor are involved in the formation of receptor-heat shock protein 90 complexes. J. Biol. Chem. 265, 20686–20691 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Mitra, R., Fain-Thornton, J. & Craig, N. L. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J. 27, 1097–1109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nature Struct. Mol. Biol. 17, 688–695 (2010).

    Article  CAS  Google Scholar 

  97. Lauchle, J. O. et al. Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature 461, 411–414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de Ridder, J., Uren, A., Kool, J., Reinders, M. & Wessels, L. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput. Biol. 2, e166 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Uren, A. G. et al. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008). This paper shows how large-scale screens in mice carrying sensitizing cancer causing mutations can be used to identify genes that are involved in collaborative cancer networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, Y. H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Devon, R. S., Porteous, D. J. & Brookes, A. J. Splinkerettes-improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res. 23, 1644–1645 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gavin, A. J. et al. Pooled library tissue tags for EST-based gene discovery. Bioinformatics 18, 1162–1166 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. C. Lee for help with the figures and members of their laboratory for helpful comments on the Review. Support was provided by the Biomedical Research Council (BMRC), Agency for Science and Technology and Research (A*STAR), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Jenkins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nancy A. Jenkins's homepage

CancerHelp UK

COSMIC database

International Cancer Genome Consortium

Glossary

Preputial

Exocrine glands that produce pheromones found in front of the genitals in some mammals.

Ingenuity pathway analysis

A curated database and analysis system used to explain how proteins work together to cause cellular changes.

Kernel function

A weighting function used in nonparametric function estimation. It gives the weights of the nearby data points in making an estimate.

Bonferroni correction

A method used to address the problem of multiple comparisons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copeland, N., Jenkins, N. Harnessing transposons for cancer gene discovery. Nat Rev Cancer 10, 696–706 (2010). https://doi.org/10.1038/nrc2916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2916

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer