Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards targeting transposable elements for cancer therapy

Abstract

Transposable elements (TEs) represent almost half of the human genome. Historically deemed ‘junk DNA’, recent technological advancements have stimulated a wave of research into the functional impact of TEs on gene-regulatory networks in evolution and development, as well as in diseases including cancer. The genetic and epigenetic evolution of cancer involves the exploitation of TEs, whereby TEs contribute directly to cancer-specific gene activities. This Review provides a perspective on the role of TEs in cancer as being a ‘double-edged sword’, both promoting cancer evolution and representing a vulnerability that could be exploited in cancer therapy. We discuss how TEs affect transcriptome regulation and other cellular processes in cancer. We highlight the potential of TEs as therapeutic targets for cancer. We also summarize technical hurdles in the characterization of TEs with genomic assays. Last, we outline open questions and exciting future research avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transposable element composition in the human genome.
Fig. 2: Tumour-suppressive and oncogenic effects of transposable elements in the cancer genome.
Fig. 3: Potential transposable-element-derived therapeutic targets.
Fig. 4: Technical challenges and contemporary algorithms in mapping transposable element expression.

Similar content being viewed by others

References

  1. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Davila, M. L. & Brentjens, R. J. CAR T cell therapy: looking back and looking forward. Nat. Cancer 3, 1418–1419 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hartl, D. L., Lozovskaya, E. R. & Lawrence, J. G. Nonautonomous transposable elements in prokaryotes and eukaryotes. Genetica 86, 47–53 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Sun, C., Feschotte, C., Wu, Z. & Mueller, R. L. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol. 13, 38 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kazazian, H. H. & Moran, J. V. Mobile DNA in health and disease. N. Engl. J. Med. 377, 361–370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burns, K. H. Transposable elements in cancer. Nat. Rev. Cancer 17, 415–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Modzelewski, A. J., Gan Chong, J., Wang, T. & He, L. Mammalian genome innovation through transposon domestication. Nat. Cell Biol. 24, 1332–1340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fueyo, R. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lawson, H. A., Liang, Y. & Wang, T. Transposable elements in mammalian chromatin organization. Nat. Rev. Genet. 24, 712–723 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Hancks, D. C. & Kazazian, H. H. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Payer, L. M. et al. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc. Natl Acad. Sci. USA 114, E3984–E3992 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beck, C. R., Garcia-Perez, J. L., Badge, R. M. & Moran, J. V. LINE-1 elements in structural variation and disease. Annu. Rev. Genom. Hum. Genet. 12, 187–215 (2011).

    Article  CAS  Google Scholar 

  18. Kazazian, H. H. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992).

    CAS  PubMed  Google Scholar 

  20. Scott, E. C. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 26, 745–755 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cajuso, T. et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat. Commun. 10, 4022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nam, C. H. et al. Widespread somatic L1 retrotransposition in normal colorectal epithelium. Nature 617, 540–547 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doucet-O’Hare, T. T. et al. LINE-1 expression and retrotransposition in Barrett’s esophagus and esophageal carcinoma. Proc. Natl Acad. Sci. USA 112, E4894–E4900 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Katz-Summercorn, A. C. et al. Multi-omic cross-sectional cohort study of pre-malignant Barrett’s esophagus reveals early structural variation and retrotransposon activity. Nat. Commun. 13, 1407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shukla, R. et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 101–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez-Martin, B. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 52, 306–319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott, E. & Devine, S. The role of somatic L1 retrotransposition in human cancers. Viruses 9, 131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ewing, A. D. et al. Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res. 25, 1536–1545 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell 80, 915–928.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Ardeljan, D. et al. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat. Struct. Mol. Biol. 27, 168–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Belgnaoui, S. M., Gosden, R. G., Semmes, O. J. & Haoudi, A. Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int. 6, 13 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gu, Z. et al. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat. Genet. 53, 672–682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kellner, M. & Makałowski, W. Transposable elements significantly contributed to the core promoters in the human genome. Sci. China Life Sci. 62, 489–497 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Huda, A., Bowen, N. J., Conley, A. B. & Jordan, I. K. Epigenetic regulation of transposable element derived human gene promoters. Gene 475, 39–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Phil. Trans. R. Soc. B 375, 20190347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lynch-Sutherland, C. F., Chatterjee, A., Stockwell, P. A., Eccles, M. R. & Macaulay, E. C. Reawakening the developmental origins of cancer through transposable elements. Front. Oncol. 10, 468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Santoni, F. A., Guerra, J. & Luban, J. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9, 111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. FANTOM Consortium et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46, 558–566 (2014).

    Article  Google Scholar 

  43. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Modzelewski, A. J. et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 184, 5541–5558.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shademan, M. et al. Promoter methylation, transcription, and retrotransposition of LINE-1 in colorectal adenomas and adenocarcinomas. Cancer Cell Int. 20, 426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kong, Y. et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019). This study shows that transposable elements are associated with increased sensitivity of tumours to the immune system, possibly by augmenting the neoantigen repository and increasing abundance of double-stranded RNA.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Iouranova, A. et al. KRAB zinc finger protein ZNF676 controls the transcriptional influence of LTR12-related endogenous retrovirus sequences. Mob. DNA 13, 4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ecco, G. et al. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev. Cell 36, 611–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wylie, A. et al. p53 genes function to restrain mobile elements. Genes. Dev. 30, 64–77 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tiwari, B. et al. p53 directly represses human LINE1 transposons. Genes. Dev. 34, 1439–1451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, C. et al. ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent transcription. Nat. Commun. 13, 3501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gainetdinov, I., Skvortsova, Y., Kondratieva, S., Funikov, S. & Azhikina, T. Two modes of targeting transposable elements by piRNA pathway in human testis. RNA 23, 1614–1625 (2017).

  54. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

  55. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 315, 1587–1590 (2007).

  56. Wolff, E. M. et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 6, e1000917 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Edginton-White, B. et al. Global long terminal repeat activation participates in establishing the unique gene expression programme of classical Hodgkin lymphoma. Leukemia 33, 1463–1474 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Nigumann, P., Redik, K., Mätlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Grundy, E. E., Diab, N. & Chiappinelli, K. B. Transposable element regulation and expression in cancer. FEBS J. 289, 1160–1179 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, Y. et al. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat. Immunol. 22, 1219–1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cherkasova, E. et al. Detection of an immunogenic HERV-E envelope with selective expression in clear cell kidney cancer. Cancer Res. 76, 2177–2185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Deblois, G. et al. Epigenetic switch-induced viral mimicry evasion in chemotherapy-resistant breast cancer. Cancer Discov. 10, 1312–1329 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Topham, J. T. et al. Endogenous retrovirus transcript levels are associated with immunogenic signatures in multiple metastatic cancer types. Mol. Cancer Ther. 19, 1889–1897 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019). This study demonstrates that transposable elements can function as cryptic oncogenic promoters that drive oncogene overexpression and facilitate tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shah, N. M. et al. Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements. Nat. Genet. 55, 631–639 (2023). This study comprehensively profiles the expression landscape of tumour-specific transposable-element–gene chimeric transcripts in a pan-cancer manner, demonstrating the potential for off-the-shelf transposable-element-derived vaccines and other immunotherapy applications targeting transposable elements.

    Article  CAS  PubMed  Google Scholar 

  67. Sato, S. et al. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci. Rep. 13, 1537 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodić, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018). This study shows that the expression of transposable elements can predict immunotherapy response in clear cell renal cell carcinoma, indirectly indicating that the expression of transposable elements can sensitize tumours to the immune system.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Attig, J. et al. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29, 1578–1590 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chuong, E. B., Rumi, M. A. K., Soares, M. J. & Baker, J. C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ye, M. et al. Specific subfamilies of transposable elements contribute to different domains of T lymphocyte enhancers. Proc. Natl Acad. Sci. USA 117, 7905–7916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liang, L. et al. Complementary Alu sequences mediate enhancer–promoter selectivity. Nature 619, 868–875 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Fuentes, D. R., Swigut, T. & Wysocka, J. Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. eLife 7, e35989 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Karttunen, K. et al. Transposable elements as tissue-specific enhancers in cancers of endodermal lineage. Nat. Commun. 14, 5313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Deniz, Ö. et al. Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat. Commun. 11, 3506 (2020). This study validates the activity of transposable-element-derived enhancers in the context of cancer and shows the oncogenic function of a subset of them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grillo, G. et al. Transposable elements are co-opted as oncogenic regulatory elements by lineage-specific transcription factors in prostate cancer. Cancer Discov. 13, 2470–2487 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schmid, C. D. & Bucher, P. MER41 repeat sequences contain inducible STAT1 binding sites. PLoS One 5, e11425 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ito, J. et al. Endogenous retroviruses drive KRAB zinc-finger protein family expression for tumor suppression. Sci. Adv. 6, eabc3020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Belancio, V. P., Hedges, D. J. & Deininger, P. LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 34, 1512–1521 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lev-Maor, G. et al. Intronic Alus influence alternative splicing. PLoS Genet. 4, e1000204 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Clayton, E. A. et al. An atlas of transposable element-derived alternative splicing in cancer. Phil. Trans. R. Soc. B 375, 20190342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, W. R. et al. Integration of TE induces cancer specific alternative splicing events. Int. J. Mol. Sci. 23, 10918 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Burbage, M. et al. Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements. Sci. Immunol. 8, eabm6360 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, Y., Qian, J., Gu, C. & Yang, Y. Alternative splicing and cancer: a systematic review. Signal. Transduct. Target. Ther. 6, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bonnal, S. C., López-Oreja, I. & Valcárcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).

    Article  PubMed  Google Scholar 

  92. Plaisance, I. et al. A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification. Cardiovasc. Res. 119, 1361–1376 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Jones, P. A., Ohtani, H., Chakravarthy, A. & De Carvalho, D. D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151–161 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Mehdipour, P. et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169–173 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Elbarbary, R. A. & Maquat, L. E. Distinct mechanisms obviate the potentially toxic effects of inverted-repeat Alu elements on cellular RNA metabolism. Nat. Struct. Mol. Biol. 24, 496–498 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heinrich, M. J. et al. Endogenous double-stranded Alu RNA elements stimulate IFN-responses in relapsing remitting multiple sclerosis. J. Autoimmun. 100, 40–51 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, Q. et al. PRMT inhibition induces a viral mimicry response in triple-negative breast cancer. Nat. Chem. Biol. 18, 821–830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wilson, K. D. et al. Endogenous retrovirus-derived lncRNA BANCR promotes cardiomyocyte migration in humans and non-human primates. Dev. Cell 54, 694–709.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jin, X. et al. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Sci. Adv. 5, eaat9820 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Noer, J. B., Hørsdal, O. K., Xiang, X., Luo, Y. & Regenberg, B. Extrachromosomal circular DNA in cancer: history, current knowledge, and methods. Trends Genet. 38, 766–781 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, T., Zhang, H., Zhou, Y. & Shi, J. Extrachromosomal circular DNA: a new potential role in cancer progression. J. Transl. Med. 19, 257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, Y. et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 599, 308–314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Møller, H. D. et al. Formation of extrachromosomal circular DNA from long terminal repeats of retrotransposons in Saccharomyces cerevisiae. G3 6, 453–462 (2016).

    Article  Google Scholar 

  105. Yang, F. et al. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature 620, 218–225 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Serafino, A. et al. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp. Cell Res. 315, 849–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Li, M. et al. Downregulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin. Cancer Res. 23, 5892–5911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou, F. et al. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 7, 84093–84117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chen, T. et al. The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia 27, 1469–1478 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Lamprecht, B. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Babaian, A. et al. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene 35, 2542–2546 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Scarfò, I. et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 127, 221–232 (2016).

    Article  PubMed  Google Scholar 

  115. Wiesner, T. et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 526, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lock, F. E. et al. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 111, E3534–E3543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Simó-Riudalbas, L. et al. Transposon-activated POU5F1B promotes colorectal cancer growth and metastasis. Nat. Commun. 13, 4913 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lock, F. E. et al. A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLOS One 12, e0180659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Grimmett, E. et al. Cancer vaccines: past, present and future; a review article. Discov. Oncol. 13, 31 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kubli, S. P., Berger, T., Araujo, D. V., Siu, L. L. & Mak, T. W. Beyond immune checkpoint blockade: emerging immunological strategies. Nat. Rev. Drug. Discov. 20, 899–919 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Dougan, M., Dranoff, G. & Dougan, S. K. Cancer immunotherapy: beyond checkpoint blockade. JACC CardioOncol. 4, 563–578 (2019).

    Google Scholar 

  124. Laumont, C. M. et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 7, 10238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Laumont, C. M. et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Zhao, Q. et al. Proteogenomics uncovers a vast repertoire of shared tumor-specific antigens in ovarian cancer. Cancer Immunol. Res. 8, 544–555 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Takahashi, Y. et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Invest. 118, 1099–1109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Krishnamurthy, J. et al. Genetic engineering of T cells to target HERV-K, an ancient retrovirus on melanoma. Clin. Cancer Res. 21, 3241–3251 (2015). This study provides an example of chimeric antigen receptor T cells engineered to target transposable elements leading to successful tumor clearance in a melanoma mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bonaventura, P., Alain, V., Qing, W., Christophe, C. & Stéphane, D. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8, eabj3671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ng, K. W. et al. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 616, 563–573 (2023). This study showcases an example of a successful antibody-based immunotherapy treatment targeting transposable elements in a lung cancer mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bonté, P.-E. et al. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 39, 110916 (2022).

    Article  PubMed  Google Scholar 

  132. Zhu, X., Fang, H., Gladysz, K., Barbour, J. A. & Wong, J. W. H. Overexpression of transposable elements is associated with immune evasion and poor outcome in colorectal cancer. Eur. J. Cancer 157, 94–107 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–E10990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. de Cubas, A. A. et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight 5, e137569 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McDonald, J. I. et al. Epigenetic therapies in ovarian cancer alter repetitive element expression in a TP53 -dependent manner. Cancer Res. 81, 5176–5189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Topper, M. J. et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171, 1284–1300.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goyal, A. et al. DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts. Nat. Commun. 14, 6731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gomez, S. et al. Inhibiting DNA methylation and RNA editing upregulates immunogenic RNA to transform the tumor microenvironment and prolong survival in ovarian cancer. J. Immunother. Cancer 10, e004974 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Griffin, G. K. et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 595, 309–314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, H.-T. et al. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer. Cell Rep. 42, 112016 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chiappinelli, K. B., Zahnow, C. A., Ahuja, N. & Baylin, S. B. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 76, 1683–1689 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Morel, D., Jeffery, D., Aspeslagh, S., Almouzni, G. & Postel-Vinay, S. Combining epigenetic drugs with other therapies for solid tumours—past lessons and future promise. Nat. Rev. Clin. Oncol. 17, 91–107 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Licht, J. D. & Bennett, R. L. Leveraging epigenetics to enhance the efficacy of immunotherapy. Clin. Epigenet. 13, 115 (2021).

    Article  CAS  Google Scholar 

  149. Belancio, V. P., Roy-Engel, A. M., Pochampally, R. R. & Deininger, P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res. 38, 3909–3922 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gardner, E. J. et al. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res. 27, 1916–1929 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Thung, D. T. et al. Mobster: accurate detection of mobile element insertions in next generation sequencing data. Genome Biol. 15, 488 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chu, C. et al. Comprehensive identification of transposable element insertions using multiple sequencing technologies. Nat. Commun. 12, 3836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mohamed, M. et al. TrEMOLO: accurate transposable element allele frequency estimation using long-read sequencing data combining assembly and mapping-based approaches. Genome Biol. 24, 63 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Disdero, E. & Filée, J. LoRTE: detecting transposon-induced genomic variants using low coverage PacBio long read sequences. Mob. DNA 8, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Fujimoto, A. et al. Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer. Genome Med. 13, 65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jin, Y., Tam, O. H., Paniagua, E. & Hammell, M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31, 3593–3599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jeong, H.-H., Yalamanchili, H. K., Guo, C., Shulman, J. M. & Liu, Z. An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pacif. Symp. Biocomput. 23, 168–179 (2018).

    Google Scholar 

  158. Lerat, E., Fablet, M., Modolo, L., Lopez-Maestre, H. & Vieira, C. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. 45, e17 (2017).

    PubMed  Google Scholar 

  159. Criscione, S. W., Zhang, Y., Thompson, W., Sedivy, J. M. & Neretti, N. Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genom. 15, 583 (2014).

    Article  Google Scholar 

  160. He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res. 47, e27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shao, W. & Wang, T. Transcript assembly improves expression quantification of transposable elements in single-cell RNA-seq data. Genome Res. 31, 88–100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bendall, M. L. et al. Telescope: characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLOS Comput. Biol. 15, e1006453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. McKerrow, W. & Fenyö, D. L1EM: a tool for accurate locus specific LINE-1 RNA quantification. Bioinformatics 36, 1167–1173 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Maeng, J. H., Jang, H. J., Du, A. Y., Tzeng, S.-C. & Wang, T. Using long-read CAGE sequencing to profile cryptic-promoter-derived transcripts and their contribution to the immunopeptidome. Genome Res. 33, 2143–2155 (2023).

  166. Berrens, R. V. et al. Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat. Biotechnol. 40, 546–554 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gualandi, N. et al. Meta-analysis suggests that intron retention can affect quantification of transposable elements from RNA-seq data. Biology 11, 826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Faulkner, G. J. Elevated L1 expression in ataxia telangiectasia likely explained by an RNA-seq batch effect. Neuron 111, 610–611 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Ansaloni, F., Gualandi, N., Esposito, M., Gustincich, S. & Sanges, R. TEspeX: consensus-specific quantification of transposable element expression preventing biases from exonized fragments. Bioinformatics 38, 4430–4433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (2013–2015). ISB http://www.repeatmasker.org (2015).

  172. Babaian, A. et al. LIONS: analysis suite for detecting and quantifying transposable element initiated transcription from RNA-seq. Bioinformatics 35, 3839–3841 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Pinson, M.-E., Pogorelcnik, R., Court, F., Arnaud, P. & Vaurs-Barrière, C. CLIFinder: identification of LINE-1 chimeric transcripts in RNA-seq data. Bioinformatics 34, 688–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Sexton, C. E. & Han, M. V. Paired-end mappability of transposable elements in the human genome. Mob. DNA 10, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kershaw, M. H. et al. Immunization against endogenous retroviral tumor-associated antigens. Cancer Res. 61, 7920–7924 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang-Johanning, F. et al. Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res. 68, 5869–5877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mullins, C. S. & Linnebacher, M. Endogenous retrovirus sequences as a novel class of tumor-specific antigens: an example of HERV-H env encoding strong CTL epitopes. Cancer Immunol. Immunother. 61, 1093–1100 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Lavialle, C. et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Phil. Trans. R. Soc. B 368, 20120507 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ferreira, L. M. R. et al. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal–fetal interface. Proc. Natl Acad. Sci. USA 113, 5364–5369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Emera, D. & Wagner, G. P. Transformation of a transposon into a derived prolactin promoter with function during human pregnancy. Proc. Natl Acad. Sci. USA 109, 11246–11251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hermant, C. & Torres-Padilla, M.-E. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes. Dev. 35, 22–39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sundaram, V. & Wang, T. Transposable element mediated innovation in gene regulatory landscapes of cells: re-visiting the “gene-battery” model. BioEssays 40, 1700155 (2018).

    Article  Google Scholar 

  191. Rebollo, R., Romanish, M. T. & Mager, D. L. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46, 21–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Choudhary, M. N. K., Quaid, K., Xing, X., Schmidt, H. & Wang, T. Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes. Nat. Commun. 14, 634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lowdon, R. F., Jang, H. S. & Wang, T. Evolution of epigenetic regulation in vertebrate genomes. Trends Genet. 32, 269–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Grillo, G. & Lupien, M. Cancer-associated chromatin variants uncover the oncogenic role of transposable elements. Curr. Opin. Genet. Dev. 74, 101911 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Wang laboratory for helpful discussions related to the project. Work performed in the Wang laboratory is supported by NIH grants R01HG007175, U24ES026699, U01HG009391 and UM1DA058219.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ting Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Geoffrey Faulkner and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alternative splicing

A cellular process whereby exons are joined differently to create alternative isoforms of the same gene that have different but related mRNA transcripts.

Antibody–drug conjugates

A rapidly developing class of therapeutic agents that combine monoclonal antibodies with drugs that can achieve cell-type-specific drug delivery.

A-to-I editing

A cellular process that is catalysed by adenosine deaminases acting on RNA (ADARs), which substitute an adenosine for an inosine on the mRNA molecule. Editing of protein-coding RNAs results in dramatic alterations to protein functions. Deficiencies in A-to-I editing lead to genetic diseases. However, the impact of A-to-I editing on Alu-element RNA sequences is still underexplored.

Bidirectional transcription

Transcription events that occur when there is one promoter on each side of a stretch of DNA sequence, initiating transcription over the sequence between the two promoters.

Cis-regulatory elements

DNA sequences that are binding sites for transcription factors and which modulate gene expression.

Condensate

Micrometre-scale subdomains within cells that concentrate biomolecules (such as transcription factors for specialized functions) but that are not bounded by membranes.

De novo transcript assembly

A computational process that utilizes transcriptomic data to construct transcript exon–intron structures.

DNase-hypersensitive sites

Chromatin regions that are characterized by elevated DNase I cleavage because of more accessible, local spatial distribution of nucleosomes.

Enhancers

Elements in the genome that enable the binding of activators and mediators that can subsequently activate expression of distal genes.

Exapted

An event in which a sequence evolves to a function that is different from the original function.

Insertional mutagenesis

Genetic mutations created by insertions of DNA segments, such as disruption of coding sequences of tumour-suppressor genes by LINE-1 retrotranspositions, that contribute to disease progression such as tumorigenesis.

Intergenic regions

DNA sequences located between genes that do not have coding potential. Parts of intergenic regions may contain functional regulatory elements.

Long non-coding RNA

RNA transcript more than 200 nucleotides in length that does not have translation potential. Long non-coding RNAs have a broad function in remodelling of chromatin structure, RNA splicing and stability, and in regulating protein functions by direct binding.

Long-read sequencing

Third-generation sequencing technology that can generate reads of thousands to hundreds of thousands of bases.

MHC tetramer

An important tool that consists of four major histocompatibility complex (MHC) molecules conjugated to a fluorochrome-labelled streptavidin to evaluate the stability of interactions between MHC molecules, antigens and T cell receptors. This tool helps to detect T cells that can recognize specific antigens.

Nanopore sequencing

One of the long-read sequencing platforms that obtains sequence information at single-molecule resolution by measuring the chemical kinetics of each base when passing each ultralong DNA molecule through a nanopore.

Neoantigens

Tumour-specific antigens presented on MHC complexes to trigger an immune response.

Promoters

A segment of DNA sequence that can be bound by RNA polymerase and other transcription machinery to initiate the process of gene expression.

Sense–antisense pairing

Complementary pairing of two nucleotide molecules.

Short-read sequencing

Also known as next-generation sequencing, short-read sequencing generates reads of hundreds of bases.

Splice acceptor sites

DNA sequences at the 3′ end of introns that terminate the intron and facilitate appropriate splicing.

Splice donor sites

DNA sequences at the 5′ end of introns that mark the beginning of introns and facilitate appropriate splicing.

Transcription-factor-binding sites

A stretch of DNA sequence that transcription factors bind to. Each transcription factor will have its own specific sequence pattern (motif) that it recognizes and binds to.

Trans-effects

Gene expression activity regulated by RNAs and proteins by binding to DNA sequences directly or indirectly.

V(D)J somatic recombination

A cellular process that occurs during the development of T cells and B cells that results in a highly diverse repository of T cell receptors and antibodies, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Qu, X., Shah, N.M. et al. Towards targeting transposable elements for cancer therapy. Nat Rev Cancer 24, 123–140 (2024). https://doi.org/10.1038/s41568-023-00653-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00653-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer