Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Breast and prostate cancer: more similar than different


Breast cancer and prostate cancer are the two most common invasive cancers in women and men, respectively. Although these cancers arise in organs that are different in terms of anatomy and physiological function both organs require gonadal steroids for their development, and tumours that arise from them are typically hormone-dependent and have remarkable underlying biological similarities. Many of the recent advances in understanding the pathophysiology of breast and prostate cancers have paved the way for new treatment strategies. In this Opinion article we discuss some key issues common to breast and prostate cancer and how new insights into these cancers could improve patient outcomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Common essential pathways of steroid biosynthesis in the breast and prostate.
Figure 2: Hormone interactions in breast and prostate epithelial cells.


  1. 1

    Huggins, C. Endocrine-induced regression of cancers. Cancer Res. 27, 1925–1930 (1967).

    CAS  PubMed  Google Scholar 

  2. 2

    Beatson, G. T. Treatment of Cancer by Oöphorectomy. Br. Med. J. 2, 1195 (1926).

    PubMed Central  Google Scholar 

  3. 3

    Ricke, W. A. et al. Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J. 22, 1512–1520 (2008).

    CAS  PubMed  Google Scholar 

  4. 4

    Price, D. et al. Toremifene for the prevention of prostate cancer in men with high grade prostatic intraepithelial neoplasia: results of a double-blind, placebo controlled, phase IIB clinical trial. J. Urol. 176, 965–970 (2006).

    CAS  PubMed  Google Scholar 

  5. 5

    Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA 93, 5925–5930 (1996).

    CAS  PubMed  Google Scholar 

  6. 6

    McPherson, S. J. et al. Essential role for estrogen receptor beta in stromal-epithelial regulation of prostatic hyperplasia. Endocrinology 148, 566–574 (2007).

    CAS  PubMed  Google Scholar 

  7. 7

    Ellem, S. J. & Risbridger, G. P. Treating prostate cancer: a rationale for targeting local oestrogens. Nature Rev. Cancer 7, 621–627 (2007).

    CAS  Google Scholar 

  8. 8

    Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    CAS  Google Scholar 

  9. 9

    McPherson, S. J. et al. Estrogen receptor-b activated apoptosis in benign hyperplasia and cancer of the prostate is androgen-independent and TNF-α mediated. Proc. Natl Acad. Sci. USA 1 Feb 2010 (doi:10.1073/pnas.0905524107).

    CAS  Google Scholar 

  10. 10

    Birrell, S. N. et al. Androgens induce divergent proliferative responses in human breast cancer cell lines. J. Steroid Biochem. Mol. Biol. 52, 459–467 (1995).

    CAS  PubMed  Google Scholar 

  11. 11

    Birrell, S. N., Butler, L. M., Harris, J. M., Buchanan, G. & Tilley, W. D. Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. FASEB J. 21, 2285–2293 (2007).

    CAS  PubMed  Google Scholar 

  12. 12

    Labrie, F. et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr. Rev. 24, 152–182 (2003).

    CAS  PubMed  Google Scholar 

  13. 13

    Shufelt, C. L. & Braunstein, G. D. Testosterone and the breast. Menopause Int. 14, 117–122 (2008).

    PubMed  Google Scholar 

  14. 14

    Peters, A. A. et al. Androgen receptor inhibits estrogen receptor-α activity and is prognostic in breast cancer. Cancer Res. 69, 6131–6140 (2009).

    CAS  PubMed  Google Scholar 

  15. 15

    Ellem, S. J. & Risbridger, G. P. The dual, opposing roles of estrogen in the prostate. Ann. NY Acad. Sci. 1155, 174–186 (2009).

    CAS  PubMed  Google Scholar 

  16. 16

    Dimitrakakis, C. et al. A physiologic role for testosterone in limiting estrogenic stimulation of the breast. Menopause 10, 292–298 (2003).

    PubMed  Google Scholar 

  17. 17

    Honma, N. et al. Clinical importance of estrogen receptor-β evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J. Clin. Oncol. 26, 3727–3734 (2008).

    PubMed  Google Scholar 

  18. 18

    Murphy, C. E., Carder, P. J., Lansdown, M. R. & Speirs, V. Steroid hormone receptor expression in male breast cancer. Eur. J. Surg. Oncol. 32, 44–47 (2006).

    CAS  PubMed  Google Scholar 

  19. 19

    Speirs, V. The evolving role of oestrogen receptor-b in clinical breast cancer. Breast Cancer Res. 10, 111 (2008).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Birrell, S. N., Roder, D. M., Horsfall, D. J., Bentel, J. M. & Tilley, W. D. Medroxyprogesterone acetate therapy in advanced breast cancer: the predictive value of androgen receptor expression. J. Clin. Oncol. 13, 1572–1577 (1995).

    CAS  PubMed  Google Scholar 

  21. 21

    Kwiatkowska, E. et al. BRCA2 mutations and androgen receptor expression as independent predictors of outcome of male breast cancer patients. Clin. Cancer Res. 9, 4452–4459 (2003).

    CAS  PubMed  Google Scholar 

  22. 22

    Park, S. et al. Expression of androgen receptors in primary breast cancer. Ann. Oncol. 3 Nov 2009 (doi:10.1093/annonc/mdp510)

    PubMed  Google Scholar 

  23. 23

    Edwards, D. P., Chamness, G. C. & McGuire, W. L. Estrogen and progesterone receptor proteins in breast cancer. Biochim. Biophys. Acta 560, 457–486 (1979).

    CAS  PubMed  Google Scholar 

  24. 24

    Graham, J. D. & Clarke, C. L. Physiological action of progesterone in target tissues. Endocr. Rev. 18, 502–519 (1997).

    CAS  PubMed  Google Scholar 

  25. 25

    Latil, A. et al. Evaluation of androgen, estrogen (ERα and ERβ), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res. 61, 1919–1926 (2001).

    CAS  PubMed  Google Scholar 

  26. 26

    Purmonen, S., Manninen, T., Pennanen, P. & Ylikomi, T. Progestins regulate genes that can elicit both proliferative and antiproliferative effects in breast cancer cells. Oncol. Rep. 19, 1627–1634 (2008).

    CAS  PubMed  Google Scholar 

  27. 27

    Swarbrick, A., Lee, C. S., Sutherland, R. L. & Musgrove, E. A. Cooperation of p27Kip1 and p18INK4c in progestin-mediated cell cycle arrest in T-47D breast cancer cells. Mol. Cell. Biol. 20, 2581–2591 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Graham, J. D. et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 150, 3318–3326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Lange, C. A. & Yee, D. Progesterone and breast cancer. Womens Health (Lond. Engl.) 4, 151–162 (2008).

    CAS  Google Scholar 

  30. 30

    Sikora, M. J. et al. The androgen metabolite 5α-androstane-3β, 17β-diol (3βAdiol) induces breast cancer growth via estrogen receptor: implications for aromatase inhibitor resistance. Breast Cancer Res. Treat 115, 289–296 (2009).

    CAS  PubMed  Google Scholar 

  31. 31

    de Jong, P. C. et al. Inhibition of breast cancer tissue aromatase activity and estrogen concentrations by the third-generation aromatase inhibitor vorozole. Cancer Res. 57, 2109–2111 (1997).

    CAS  PubMed  Google Scholar 

  32. 32

    Simpson, E. R. et al. Estrogen — the good, the bad, and the unexpected. Endocr. Rev. 26, 322–330 (2005).

    CAS  PubMed  Google Scholar 

  33. 33

    Mohler, J. L. et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10, 440–448 (2004).

    CAS  PubMed  Google Scholar 

  34. 34

    Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B. & Mohler, J. L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 11, 4653–4657 (2005).

    CAS  PubMed  Google Scholar 

  35. 35

    Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Locke, J. A. et al. Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts. J. Steroid Biochem. Mol. Biol. 115, 126–136 (2009).

    CAS  PubMed  Google Scholar 

  37. 37

    Scher, H. I., Buchanan, G., Gerald, W., Butler, L. M. & Tilley, W. D. Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr. Relat Cancer 11, 459–476 (2004).

    CAS  PubMed  Google Scholar 

  38. 38

    Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr. Rev. 30, 343–375 (2009).

    CAS  PubMed  Google Scholar 

  39. 39

    Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Reid, A. H., Attard, G., Barrie, E. & de Bono, J. S. CYP17 inhibition as a hormonal strategy for prostate cancer. Nature Clin. Pract. Urol. 5, 610–620 (2008).

    CAS  Google Scholar 

  41. 41

    McKenna, N. J., Lanz, R. B. & O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20, 321–344 (1999).

    CAS  PubMed  Google Scholar 

  42. 42

    Gao, X., Loggie, B. W. & Nawaz, Z. The roles of sex steroid receptor coregulators in cancer. Mol. Cancer 1, 7 (2002).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Chmelar, R., Buchanan, G., Need, E. F., Tilley, W. & Greenberg, N. M. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int. J. Cancer 120, 719–733 (2007).

    CAS  PubMed  Google Scholar 

  44. 44

    O'Malley, B. W. & Kumar, R. Nuclear receptor coregulators in cancer biology. Cancer Res. 69, 8217–8222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Iorns, E. et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13, 91–104 (2008).

    CAS  PubMed  Google Scholar 

  46. 46

    Shou, J. et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96, 926–935 (2004).

    CAS  PubMed  Google Scholar 

  47. 47

    Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).

    CAS  PubMed  Google Scholar 

  48. 48

    Fleming, F. J. et al. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 57, 1069–1074 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Redmond, A. M. et al. Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clin. Cancer Res. 15, 2098–2106 (2009).

    CAS  PubMed  Google Scholar 

  50. 50

    Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).

    CAS  PubMed  Google Scholar 

  51. 51

    Zhou, H. J. et al. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res. 65, 7976–7983 (2005).

    CAS  Google Scholar 

  52. 52

    Yan, J. et al. Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res. 68, 5460–5468 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Ramamoorthy, S. & Nawaz, Z. E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors. Nucl. Recept Signal 6, e006 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Dobson, R. Prostate cancer patients with BRCA2 mutation face poor survival. BMJ 337, a705 (2008).

    PubMed  Google Scholar 

  55. 55

    Agalliu, I., Gern, R., Leanza, S. & Burk, R. D. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin. Cancer Res. 15, 1112–1120 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Wen, J., Li, R., Lu, Y. & Shupnik, M. A. Decreased BRCA1 confers tamoxifen resistance in breast cancer cells by altering estrogen receptor-coregulator interactions. Oncogene 28, 575–586 (2009).

    PubMed  Google Scholar 

  57. 57

    Park, J. J. et al. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res. 60, 5946–5949 (2000).

    CAS  PubMed  Google Scholar 

  58. 58

    Yeh, S. et al. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc. Natl Acad. Sci. USA 97, 11256–11261 (2000).

    CAS  PubMed  Google Scholar 

  59. 59

    Shin, S. & Verma, I. M. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc. Natl Acad. Sci. USA 100, 7201–7206 (2003).

    CAS  PubMed  Google Scholar 

  60. 60

    Buchanan, G. et al. Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res. 67, 10087–10096 (2007).

    CAS  PubMed  Google Scholar 

  61. 61

    Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Maitland, N. J. & Collins, A. T. Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol. 26, 2862–2870 (2008).

    PubMed  Google Scholar 

  63. 63

    Davis, I. D. & Desai, J. Clinical use of therapies targeting tumor vasculature and stroma. Curr. Cancer Drug Targets. 8, 498–508 (2008).

    CAS  PubMed  Google Scholar 

  64. 64

    Taylor, R. A. & Risbridger, G. P. Prostatic tumor stroma: a key player in cancer progression. Curr. Cancer Drug Targets. 8, 490–497 (2008).

    CAS  PubMed  Google Scholar 

  65. 65

    Cunha, G. R. Mesenchymal-epithelial interactions: past, present, and future. Differentiation 76, 578–586 (2008).

    CAS  PubMed  Google Scholar 

  66. 66

    Henshall, S. M. et al. Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Res. 61, 423–427 (2001).

    CAS  PubMed  Google Scholar 

  67. 67

    Ayala, G. et al. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin. Cancer Res. 9, 4792–4801 (2003).

    CAS  PubMed  Google Scholar 

  68. 68

    Yanagisawa, N. et al. Reprint of: Stromogenic prostatic carcinoma pattern (carcinomas with reactive stromal grade 3) in needle biopsies predicts biochemical recurrence-free survival in patients after radical prostatectomy. Hum. Pathol. 39, 282–291 (2008).

    PubMed  Google Scholar 

  69. 69

    Risbridger, G. P. & Taylor, R. A. Minireview: regulation of prostatic stem cells by stromal niche in health and disease. Endocrinology 149, 4303–4306 (2008).

    CAS  PubMed  Google Scholar 

  70. 70

    Hu, M. & Polyak, K. Molecular characterisation of the tumour microenvironment in breast cancer. Eur. J. Cancer 44, 2760–2765 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Cunha, G. R. et al. Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J. Steroid Biochem. Mol. Biol. 92, 221–236 (2004).

    CAS  PubMed  Google Scholar 

  72. 72

    Schaeffer, E. M. et al. Androgen induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 27, 7180–7191 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Joesting, M. S. et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res. 65, 10423–10430 (2005).

    CAS  PubMed  Google Scholar 

  74. 74

    Ma, X. J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D. C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11, 7 (2009).

    Google Scholar 

  75. 75

    Sadlonova, A. et al. Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron. 2, 9–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Zhu, P. et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124, 615–629 (2006).

    CAS  PubMed  Google Scholar 

  78. 78

    Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3, 991–998 (2002).

    CAS  Google Scholar 

  79. 79

    DeNardo, D. G. & Coussens, L. M. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 9, 212 (2007).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Lehrer, S. et al. C-reactive protein is significantly associated with prostate-specific antigen and metastatic disease in prostate cancer. BJU Int. 95, 961–962 (2005).

    CAS  PubMed  Google Scholar 

  81. 81

    MacLennan, G. T. et al. The influence of chronic inflammation in prostatic carcinogenesis: a 5-year followup study. J. Urol. 176, 1012–1016 (2006).

    PubMed  Google Scholar 

  82. 82

    Zheng, S. L. et al. A comprehensive association study for genes in inflammation pathway provides support for their roles in prostate cancer risk in the CAPS study. Prostate 66, 1556–1564 (2006).

    CAS  PubMed  Google Scholar 

  83. 83

    Hagemann, T. et al. Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J. Immunol. 175, 1197–1205 (2005).

    CAS  Google Scholar 

  84. 84

    Zhu, X. et al. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 10, R95 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Lin, W. W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117, 1175–1183 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Gingras, S., Cote, S. & Simard, J. Multiple signal transduction pathways mediate interleukin-4-induced 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase in normal and tumoral target tissues. J. Steroid Biochem. Mol. Biol. 76, 213–225 (2001).

    CAS  PubMed  Google Scholar 

  87. 87

    Simard, J. & Gingras, S. Crucial role of cytokines in sex steroid formation in normal and tumoral tissues. Mol. Cell Endocrinol. 171, 25–40 (2001).

    CAS  PubMed  Google Scholar 

  88. 88

    Lou, W., Ni, Z., Dyer, K., Tweardy, D. J. & Gao, A. C. Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42, 239–242 (2000).

    CAS  PubMed  Google Scholar 

  89. 89

    Giri, D. & Ittmann, M. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. Am. J. Pathol. 159, 139–147 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Liu, X. H. et al. Prostaglandin E2 stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem. Biophys. Res. Commun. 290, 249–255 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Lee, S. O., Chun, J. Y., Nadiminty, N., Lou, W. & Gao, A. C. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate 67, 764–773 (2007).

    CAS  PubMed  Google Scholar 

  92. 92

    Sansone, P. et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest. 117, 3988–4002 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Conticello, C. et al. IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J. Immunol. 172, 5467–5477 (2004).

    CAS  PubMed  Google Scholar 

  94. 94

    Lee, S. O. et al. Interleukin-4 activates androgen receptor through CBP/p300. Prostate 69, 126–132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Jefford, M., Maraskovsky, E., Cebon, J. & Davis, I. D. The use of dendritic cells in cancer therapy. Lancet Oncol. 2, 343–353 (2001).

    CAS  PubMed  Google Scholar 

  96. 96

    Higano, C. S. et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115, 3670–3679 (2009).

    CAS  PubMed  Google Scholar 

  97. 97

    Ingle, J. N. Estrogen as therapy for breast cancer. Breast Cancer Res. 4, 133–136 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Li, C. I., Daling, J. R., Porter, P. L., Tang, M. T. & Malone, K. E. Adjuvant hormonal therapy for breast cancer and risk of hormone receptor-specific subtypes of contralateral breast cancer. Cancer Res. 69, 6865–6870 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Huggins, C. & Hodges, C. V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J. Urol. 168, 9–12 (2002).

    PubMed  Google Scholar 

  100. 100

    Early Breast Cancer Trialists' Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  101. 101

    Seidenfeld, J. et al. Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann. Intern. Med. 132, 566–577 (2000).

    CAS  PubMed  Google Scholar 

  102. 102

    Stewart, H. J., Prescott, R. J. & Forrest, A. P. Scottish adjuvant tamoxifen trial: a randomized study updated to 15 years. J. Natl Cancer Inst. 93, 456–462 (2001).

    CAS  PubMed  Google Scholar 

  103. 103

    Bedognetti, D. et al. An open, randomised, multicentre, Phase 3 trial comparing the efficacy of two tamoxifen schedules in preventing gynaecomastia induced by bicalutamide monotherapy in prostate cancer patients. Eur. Urol. 57, 238–245 (2010).

    CAS  PubMed  Google Scholar 

  104. 104

    Smith, M. R. et al. Toremifene increases bone mineral density in men receiving androgen deprivation therapy for prostate cancer: interim analysis of a multicenter phase 3 clinical study. J. Urol. 179, 152–155 (2008).

    CAS  PubMed  Google Scholar 

  105. 105

    Smith, M. R. et al. Toremifene improves lipid profiles in men receiving androgen-deprivation therapy for prostate cancer: interim analysis of a multicenter phase III study. J. Clin. Oncol. 26, 1824–1829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Yamamoto, Y. et al. Clinical usefulness of high-dose toremifene in patients relapsed on treatment with an aromatase inhibitor. Breast Cancer 15 Aug 2009 (doi:10.1007/s12282-009-0148-2).

    PubMed  Google Scholar 

  107. 107

    Clarke, B. L. & Khosla, S. New selective estrogen and androgen receptor modulators. Curr. Opin. Rheumatol. 21, 374–379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Ingle, J. N. et al. Randomized trial of tamoxifen alone or combined with fluoxymesterone as adjuvant therapy in postmenopausal women with resected estrogen receptor positive breast cancer. North Central Cancer Treatment Group Trial 89-30-52. Breast Cancer Res. Treat 98, 217–222 (2006).

    CAS  PubMed  Google Scholar 

  109. 109

    Klotz, L. Maximal androgen blockade for advanced prostate cancer. Best Pract. Res. Clin. Endocrinol. Metab. 22, 331–340 (2008).

    CAS  PubMed  Google Scholar 

  110. 110

    Sartor, A. O. et al. Antiandrogen withdrawal in castrate-refractory prostate cancer: a Southwest Oncology Group trial (SWOG 9426). Cancer 112, 2393–2400 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Baum, M. et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer 98, 1802–1810 (2003).

    CAS  PubMed  Google Scholar 

  112. 112

    Gibson, L. J., Dawson, C. K., Lawrence, D. H. & Bliss, J. M. Aromatase inhibitors for treatment of advanced breast cancer in postmenopausal women. Cochrane Database Syst. Rev., CD003370 (2007).

  113. 113

    Deeks, E. D. & Scott, L. J. Exemestane: a review of its use in postmenopausal women with breast cancer. Drugs 69, 889–918 (2009).

    CAS  PubMed  Google Scholar 

  114. 114

    Winer, E. P. et al. American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer: status report 2004. J. Clin. Oncol. 23, 619–629 (2005).

    CAS  PubMed  Google Scholar 

  115. 115

    Smith, M. R. et al. Selective aromatase inhibition for patients with androgen-independent prostate carcinoma. Cancer 95, 1864–1868 (2002).

    CAS  PubMed  Google Scholar 

  116. 116

    Sharma, R., Hamilton, A. & Beith, J. LHRH agonists for adjuvant therapy of early breast cancer in premenopausal women. Cochrane Database Syst. Rev., CD004562 (2008).

  117. 117

    Klotz, L. et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int. 102, 1531–1538 (2008).

    CAS  PubMed  Google Scholar 

  118. 118

    De Nunzio, C., Miano, R., Trucchi, A., Finazzi Agro, E. & Tubaro, A. Finasteride for prostatic disease: an updated and comprehensive review. Expert Opin. Drug Metab. Toxicol. 4, 1561–1568 (2008).

    CAS  PubMed  Google Scholar 

  119. 119

    Murtola, T. J. et al. Prostate cancer incidence among finasteride and α-blocker users in the Finnish Prostate Cancer Screening Trial. Br. J. Cancer 101, 843–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Kaplan, S. A. et al. PCPT: evidence that finasteride reduces risk of most frequently detected intermediate- and high-grade (Gleason score 6 and 7) cancer. Urology 73, 935–939 (2009).

    PubMed  Google Scholar 

  121. 121

    Labrie, C., Cusan, L., Plante, M., Lapointe, S. & Labrie, F. Analysis of the androgenic activity of synthetic “progestins” currently used for the treatment of prostate cancer. J. Steroid Biochem. 28, 379–384 (1987).

    CAS  PubMed  Google Scholar 

  122. 122

    Small, E. J. et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J. Clin. Oncol. 22, 1025–1033 (2004).

    CAS  PubMed  Google Scholar 

  123. 123

    Ryan, C. J. et al. Phase II study of ketoconazole plus granulocyte-macrophage colony-stimulating factor for prostate cancer: effect of extent of disease on outcome. J. Urol. 178, 2372–2377 (2007).

    CAS  PubMed  Google Scholar 

  124. 124

    Tannock, I. F. et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J. Clin. Oncol. 14, 1756–1764 (1996).

    CAS  PubMed  Google Scholar 

  125. 125

    Ang, J. E., Olmos, D. & de Bono, J. S. CYP17 blockade by abiraterone: further evidence for frequent continued hormone-dependence in castration-resistant prostate cancer. Br. J. Cancer 100, 671–675 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Antonarakis, E. S. & Eisenberger, M. A. Is abiraterone acetate well tolerated and effective in the treatment of castration-resistant prostate cancer? Nature Clin. Pract. Oncol. 6, 12–13 (2009).

    CAS  Google Scholar 

  127. 127

    Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank C. Nelson, T. Hickey and L. Young for their insightful comments during the preparation of this article. This work was funded by the National Health and Medical Research Council of Australia (G.P.R. 545931, S.N.B. and W.D.T. 250373); the Susan G. Komen Foundation (W.D.T. ECTR111806); the National Breast Cancer Foundation (W.D.T. 399182); the US Army Medical Research and Materiel Command (G.P.R. PC073444, S.N.B., W.D.T. and DAMD 17-03-1-0618) and Prostate Cancer Foundation Australia (G.P.R. PG6). I.D.D. is supported in part by a Victorian Cancer Agency Clinical Researcher Fellowship and is an honorary NHMRC Practitioner Fellow.

Author information



Corresponding author

Correspondence to Gail P. Risbridger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links




National Cancer Institute Drug Dictionary

abiraterone acetate




Gail P. Risbridger's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Risbridger, G., Davis, I., Birrell, S. et al. Breast and prostate cancer: more similar than different. Nat Rev Cancer 10, 205–212 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing