Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Prostate zones and cancer: lost in transition?

Abstract

Localized prostate cancer shows great clinical, genetic and environmental heterogeneity; however, prostate cancer treatment is currently guided solely by clinical staging, serum PSA levels and histology. Increasingly, the roles of differential genomics, multifocality and spatial distribution in tumorigenesis are being considered to further personalize treatment. The human prostate is divided into three zones based on its histological features: the peripheral zone (PZ), the transition zone (TZ) and the central zone (CZ). Each zone has variable prostate cancer incidence, prognosis and outcomes, with TZ prostate tumours having better clinical outcomes than PZ and CZ tumours. Molecular and cell biological studies can improve understanding of the unique molecular, genomic and zonal cell type features that underlie the differences in tumour progression and aggression between the zones. The unique biology of each zonal tumour type could help to guide individualized treatment and patient risk stratification.

Key points

  • The prostate is divided into three glandular zones — the peripheral, transition and central zones — each having a different prostate cancer incidence and prognosis.

  • Differences in histology and molecular profiling between the prostate zones highlight their potential role in tumour aggressiveness.

  • Peripheral zone tumours are associated with poorer pathological features and clinical outcomes than transition zone tumours.

  • Despite the differences reported, treatment of prostate cancer remains zonal agnostic.

  • An improved biological understanding of prostate zones and their roles in tumorigenesis could improve prostate cancer management in clinics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of the non-malignant prostate gland and tumour location according to zones.
Fig. 2: Stromal band as a border between the peripheral and transition zones.
Fig. 3: Graphic summary of the current understanding of peripheral zone and transition zone prostate cancer.
Fig. 4
Fig. 5: Zone-specific risk stratification working model.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  2. Cancer Research UK. Prostate cancer statistics. Cancer Research UK https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer (2021).

  3. NIH. Surveillance, Epidemiology, and End Results (SEER) Program. NIH https://seer.cancer.gov/statfacts/html/prost.html (2021).

  4. D’Amico, A. V. et al. 5 year biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. Int. J. Radiat. Oncol. 42, 301 (1998).

    Google Scholar 

  5. Mohler, J. L. et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 17, 479–505 (2019).

    CAS  Google Scholar 

  6. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  PubMed  Google Scholar 

  7. Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    CAS  Google Scholar 

  8. Zhang, J. et al. International Cancer Genome Consortium Data Portal — a one-stop shop for cancer genomics data. Database 2011, bar026 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Andreoiu, M. & Cheng, L. Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum. Pathol. 41, 781–793 (2010).

    PubMed  Google Scholar 

  10. Karavitakis, M., Ahmed, H. U., Abel, P. D., Hazell, S. & Winkler, M. H. Tumor focality in prostate cancer: implications for focal therapy. Nat. Rev. Clin. Oncol. 8, 48–55 (2011).

    PubMed  Google Scholar 

  11. Teloken, P. E., Li, J., Woods, C. G. & Cohen, R. J. The impact of prostate cancer zonal origin on pathological parameters at radical prostatectomy and subsequent biochemical failure. J. Urol. 198, 1316–1323 (2017).

    PubMed  Google Scholar 

  12. Takamatsu, K. et al. The prognostic value of zonal origin and extraprostatic extension of prostate cancer for biochemical recurrence after radical prostatectomy. Urol. Oncol. Semin. Orig. Investig. 37, 575.e19–575.e25 (2019).

    Google Scholar 

  13. Buhmeida, A., Pyrhönen, S., Laato, M. & Collan, Y. Prognostic factors in prostate cancer. Diagn. Pathol. 1, 4 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yun, J. W. et al. Biomarkers associated with tumor heterogeneity in prostate cancer. Transl Oncol. 12, 43–48 (2019).

    PubMed  Google Scholar 

  15. Espiritu, S. M. G. et al. The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell 173, 1003–1013.e15 (2018).

    CAS  PubMed  Google Scholar 

  16. Ruijter, E. T., Van de Kaa, C. A., Schalken, J. A., Debruyne, F. M. & Ruiter, D. J. Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J. Pathol. 180, 295–299 (1996).

    CAS  PubMed  Google Scholar 

  17. Barry, M., Perner, S., Demichelis, F. & Rubin, M. A. TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 70, 630–633 (2007).

    PubMed  Google Scholar 

  18. Boyd, L. K. et al. High-resolution genome-wide copy-number analysis suggests a monoclonal origin of multifocal prostate cancer. Genes Chromosom. Cancer 51, 579–589 (2012).

    CAS  PubMed  Google Scholar 

  19. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    CAS  PubMed  Google Scholar 

  20. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).

    CAS  PubMed  Google Scholar 

  21. Wei, L. et al. Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur. Urol. 71, 183–192 (2017).

    CAS  PubMed  Google Scholar 

  22. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174, 758–769.e9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McNeal, J. E. Regional morphology and pathology of the prostate. Am. J. Clin. Pathol. 49, 347–357 (1968).

    CAS  PubMed  Google Scholar 

  26. McNeal, J. E. The zonal anatomy of the prostate. Prostate 2, 35–49 (1981).

    CAS  PubMed  Google Scholar 

  27. McNeal, J. E., Redwine, E. A., Freiha, F. S. & Stamey, T. A. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am. J. Surg. Pathol. 12, 897–906 (1988).

    CAS  PubMed  Google Scholar 

  28. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wedge, D. C. et al. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat. Genet. 50, 682–692 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Leongamornlert, D. et al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer 106, 1697–1701 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Josson, S., Matsuoka, Y., Chung, L. W. K., Zhau, H. E. & Wang, R. Tumor–stroma co-evolution in prostate cancer progression and metastasis. Semin. Cell Dev. Biol. 21, 26–32 (2010).

    CAS  PubMed  Google Scholar 

  32. Frankenstein, Z. et al. Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression. Nat. Ecol. Evol. 4, 870–884 (2020).

    PubMed  Google Scholar 

  33. Sato, S., Kimura, T., Onuma, H., Egawa, S. & Takahashi, H. Transition zone prostate cancer is associated with better clinical outcomes than peripheral zone cancer. BJUI Compass 2, 169–177 (2021).

    PubMed  Google Scholar 

  34. Lee, J. J. et al. Biologic differences between peripheral and transition zone prostate cancer. Prostate 75, 183–190 (2015).

    PubMed  Google Scholar 

  35. Lee, F. et al. Prostate cancer: transrectal ultrasound and pathology comparison. A preliminary study of outer gland (peripheral and central zones) and inner gland (transition zone) cancer. Cancer 67, 1132–1142 (1991).

    CAS  PubMed  Google Scholar 

  36. Noguchi, M., Stamey, T. A., McNeal, J. E. & Yemoto, C. E. M. An analysis of 148 consecutive transition zone cancer: clinical and histological characteristics. J. Urol. 163, 1751–1755 (2000).

    CAS  PubMed  Google Scholar 

  37. Shannon, B. A., McNeal, J. E. & Cohen, R. J. Transition zone carcinoma of the prostate gland: a common indolent tumour type that occasionally manifests aggressive behaviour. Pathology 35, 467–471 (2003).

    PubMed  Google Scholar 

  38. Augustin, H. et al. Differences in biopsy features between prostate cancers located in the transition and peripheral zone. BJU Int. 91, 477–481 (2003).

    CAS  PubMed  Google Scholar 

  39. Steuber, T. et al. Transition zone cancers undermine the predictive accuracy of Partin table stage predictions. J. Urol. 173, 737–741 (2005).

    CAS  PubMed  Google Scholar 

  40. Sakai, I. et al. Analysis of differences in clinicopathological features between prostate cancers located in the transition and peripheral zones. Int. J. Urol. 13, 368–372 (2006).

    PubMed  Google Scholar 

  41. King, C. R., Ferrari, M. & Brooks, J. D. Prognostic significance of prostate cancer originating from the transition zone. Urol. Oncol. Semin. Orig. Investig. 27, 592–597 (2009).

    Google Scholar 

  42. Asvadi, N. H. et al. 3T multiparametric MR imaging, PIRADSv2-based detection of index prostate cancer lesions in the transition zone and the peripheral zone using whole mount histopathology as reference standard. Abdom. Radiol. 43, 3117–3124 (2018).

    Google Scholar 

  43. Rosenkrantz, A. B., Verma, S. & Turkbey, B. Prostate cancer: top places where tumors hide on multiparametric MRI. Am. J. Roentgenol. 204, W449–W456 (2015).

    Google Scholar 

  44. Turkbey, B. et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J. Urol. 186, 1818–1824 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. Sinnott, J. A. et al. Molecular differences in transition zone and peripheral zone prostate tumors. Carcinogenesis 36, 632–638 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Der Heul-Nieuwenhuijsen, L., Hendriksen, P. J. M., Van Der Kwast, T. H. & Jenster, G. Gene expression profiling of the human prostate zones. BJU Int. 98, 886–897 (2006).

    PubMed  Google Scholar 

  47. Penney, K. L. et al. Association of prostate cancer risk variants with gene expression in normal and tumor tissue. Cancer Epidemiol. Biomark. Prev. 24, 255–260 (2015).

    CAS  Google Scholar 

  48. Kadhi, O. A. L. et al. Increased transcriptional and metabolic capacity for lipid metabolism in the peripheral zone of the prostate may underpin its increased susceptibility to cancer. Oncotarget 8, 84902–84916 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Henry, G. H. et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 25, 3530–3542.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Epstein, J. I., Feng, Z., Trock, B. J. & Pierorazio, P. M. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur. Urol. 61, 1019–1024 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Berney, D. M., Montironi, R. & Egevad, L. Pathology in prostate research: optimizing tissue quality. Acta Oncol. 50, 53–55 (2011).

    PubMed  Google Scholar 

  52. Barentsz, J. O. et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur. Urol. 69, 41–49 (2016).

    PubMed  Google Scholar 

  53. Weinreb, J. C. et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016).

    PubMed  Google Scholar 

  54. Akin, O. et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239, 784–792 (2006).

    PubMed  Google Scholar 

  55. Merrill, R. M. & Wiggins, C. L. Incidental detection of population-based prostate cancer incidence rates through transurethral resection of the prostate. Urol. Oncol. Semin. Orig. Investig. 7, 213–219 (2002).

    Google Scholar 

  56. Perera, M., Lawrentschuk, N., Perera, N., Bolton, D. & Clouston, D. Incidental prostate cancer in transurethral resection of prostate specimens in men aged up to 65 years. Prostate Int. 4, 11–14 (2016).

    PubMed  Google Scholar 

  57. McNeal, J. E. Cancer volume and site of origin of adenocarcinoma in the prostate: relationship to local and distant spread. Hum. Pathol. 23, 258–266 (1992).

    CAS  PubMed  Google Scholar 

  58. Cohen, R. J. et al. Central zone carcinoma of the prostate gland: a distinct tumor type with poor prognostic features. J. Urol. 179, 1762–1767 (2008).

    PubMed  Google Scholar 

  59. Vargas, H. A. et al. Normal central zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications. Radiology 262, 894–902 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. Garcia, J. J. et al. Do prostatic transition zone tumors have a distinct morphology? Am. J. Surg. Pathol. 32, 1709–1714 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Greene, D. R., Wheeler, T. M., Egawa, S., Dunn, J. K. & Scardino, P. T. A comparison of the morphological features of cancer arising in the transition zone and in the peripheral zone of the prostate. J. Urol. 146, 1069–1076 (1991).

    CAS  PubMed  Google Scholar 

  62. Chagas, M. A., Babinski, M. A., Costa, W. S. & Sampaio, F. J. B. Stromal and acinar components of the transition zone in normal and hyperplastic human prostate. BJU Int. 89, 699–702 (2002).

    CAS  PubMed  Google Scholar 

  63. Zhang, Y., Nojima, S., Nakayama, H., Jin, Y. & Enza, H. Characteristics of normal stromal components and their correlation with cancer occurrence in human prostate. Oncol. Rep. 10, 207–211 (2003).

    PubMed  Google Scholar 

  64. Powell, M. S. et al. Neuroanatomy of the normal prostate. Prostate 65, 52–57 (2005).

    PubMed  Google Scholar 

  65. Alves, E. F., de Freitas Ribeiro, B. L. M., Costa, W. S., Gallo, C. B. M. & Sampaio, F. J. B. Histological and quantitative analyzes of the stromal and acinar components of normal human prostate zones. Prostate 78, 289–293 (2018).

    CAS  PubMed  Google Scholar 

  66. Kellokumpu-Lehtinen, P., Santti, R. & Pelliniemi, L. J. Correlation of early cytodifferentiation of the human fetal prostate and Leydig cells. Anat. Rec. 196, 263–273 (1980).

    CAS  PubMed  Google Scholar 

  67. Seifert, A. W., Harfe, B. D. & Cohn, M. J. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum. Dev. Biol. 318, 143–152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Toivanen, R. & Shen, M. M. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development 144, 1382–1398 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Berman, D. M., Rodriguez, R. & Veltri, R. W. Development, molecular biology, and physiology of the prostate. in Campbell-Walsh Urology 2533–2569.e11 (Elsevier, 2012).

  70. Lowsley, O. S. The development of the human prostate gland with reference to the development of other structures at the neck of the urinary bladder. Am. J. Anat. 13, 299–349 (1912).

    Google Scholar 

  71. Quick, C. M., Gokden, N., Sangoi, A. R., Brooks, J. D. & McKenney, J. K. The distribution of PAX-2 immunoreactivity in the prostate gland, seminal vesicle, and ejaculatory duct: comparison with prostatic adenocarcinoma and discussion of prostatic zonal embryogenesis. Hum. Pathol. 41, 1145–1149 (2010).

    CAS  PubMed  Google Scholar 

  72. Arenas, M. I. et al. Morphometric evaluation of the human prostate. Int. J. Androl. 24, 37–47 (2001).

    CAS  PubMed  Google Scholar 

  73. Ul-Hassan, A., Hassan, G., Shafi, M. & Bhat, M. Changes in the normal cellular architecture in the prostatic tissue with the increasing age. Int. J. Health Sci. 2, 171–8 (2008).

    Google Scholar 

  74. Grossmann, S. et al. Development, maturation, and maintenance of human prostate inferred from somatic mutations. Cell Stem Cell 28, 1262–1274.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Meikle, A. W., Stephenson, R. A., Lewis, C. M. & Middleton, R. G. Effects of age and sex hormones on transition and peripheral zone volumes of prostate and benign prostatic hyperplasia in twins 1. J. Clin. Endocrinol. Metab. 82, 571–575 (1997).

    CAS  PubMed  Google Scholar 

  76. Greene, D. R., Egawa, S., Hellerstein, D. K. & Scardino, P. T. Sonographic measurements of transition zone of prostate in men with and without benign prostatic hyperplasia. Urology 36, 293–299 (1990).

    CAS  PubMed  Google Scholar 

  77. Villers, A., Terris, M. K., McNeal, J. E. & Stamey, T. A. Ultrasound anatomy of the prostate: the normal gland and anatomical variations. J. Urol. 143, 732–738 (1990).

    CAS  PubMed  Google Scholar 

  78. Zhou, M. & Magi-Galluzzi, C. Prostatic adenocarcinoma, prostatic intraepithelial neoplasia, and intraductal carcinoma. Surg. Pathol. Clin. 1, 43–75 (2008).

    PubMed  Google Scholar 

  79. Zynger, D. L. & Yang, X. High-grade prostatic intraepithelial neoplasia of the prostate: the precursor lesion of prostate cancer. Int. J. Clin. Exp. Pathol. 2, 327–38 (2009).

    CAS  PubMed  Google Scholar 

  80. Cheng, L. et al. Molecular evidence supporting the precursor nature of atypical adenomatous hyperplasia of the prostate. Mol. Carcinog. 58, 1272–1278 (2019).

    CAS  PubMed  Google Scholar 

  81. Zhang, C. et al. Is atypical adenomatous hyperplasia of the prostate a precursor lesion? Prostate 71, 1746–1751 (2011).

    CAS  PubMed  Google Scholar 

  82. Selman, S. H. The McNeal prostate: a review. Urology 78, 1224–1228 (2011).

    PubMed  Google Scholar 

  83. Chun, F. K.-H. K. H. et al. Zonal origin of localized prostate cancer does not affect the rate of biochemical recurrence after radical prostatectomy. Eur. Urol. 51, 949–955 (2007).

    PubMed  Google Scholar 

  84. Sakai, I., Harada, K.-I., Hara, I., Eto, H. & Miyake, H. A comparison of the biological features between prostate cancers arising in the transition and peripheral zones. BJU Int. 96, 528–532 (2005).

    PubMed  Google Scholar 

  85. Crowley, L. et al. A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors. eLife 9, e59465 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bott, S. R. J., Young, M. P. A., Kellett, M. J. & Parkinson, M. C. Anterior prostate cancer: is it more difficult to diagnose? BJU Int. 89, 886–889 (2002).

    CAS  PubMed  Google Scholar 

  87. Meng, M. V., Franks, J. H., Presti, J. C. & Shinohara, K. The utility of apical anterior horn biopsies in prostate cancer detection. Urol. Oncol. Semin. Orig. Investig. 21, 361–365 (2003).

    Google Scholar 

  88. Miyake, H., Sakai, I., Ishimura, T., Hara, I. & Eto, H. Significance of cancer detection in the anterior lateral horn on systematic prostate biopsy: the effect on pathological findings of radical prostatectomy specimens. BJU Int. 93, 57–59 (2004).

    CAS  PubMed  Google Scholar 

  89. Moussa, A. S. et al. Importance of additional “Extreme” anterior apical needle biopsies in the initial detection of prostate cancer. Urology 75, 1034–1039 (2010).

    PubMed  Google Scholar 

  90. Bott, S. R. J. et al. Extensive transperineal template biopsies of prostate: modified technique and results. Urology 68, 1037–1041 (2006).

    PubMed  Google Scholar 

  91. Taira, A. V. et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis. 13, 71–77 (2010).

    CAS  PubMed  Google Scholar 

  92. Patel, V. et al. The incidence of transition zone prostate cancer diagnosed by transperineal template-guided mapping biopsy: implications for treatment planning. Urology 77, 1148–1152 (2011).

    PubMed  Google Scholar 

  93. Pinkstaff, D. M. et al. Systematic transperineal ultrasound-guided template biopsy of the prostate: three-year experience. Urology 65, 735–739 (2005).

    PubMed  Google Scholar 

  94. Kawakami, S. et al. Optimal sampling sites for repeat prostate biopsy: a recursive partitioning analysis of three-dimensional 26-core systematic biopsy. Eur. Urol. 51, 675–683 (2007).

    PubMed  Google Scholar 

  95. Falzarano, S. M. et al. Can saturation biopsy predict prostate cancer localization in radical prostatectomy specimens: a correlative study and implications for focal therapy. Urology 76, 682–687 (2010).

    PubMed  Google Scholar 

  96. Lane, B. R. et al. Saturation technique does not decrease cancer detection during followup after initial prostate biopsy. J. Urol. 179, 1746–1750 (2008).

    PubMed  Google Scholar 

  97. Koppie, T. M. et al. The clinical features of anterior prostate cancers. BJU Int. 98, 1167–1171 (2006).

    PubMed  PubMed Central  Google Scholar 

  98. Kim, M. et al. Characteristics of anteriorly located prostate cancer and the usefulness of multiparametric magnetic resonance imaging for diagnosis. J. Urol. 196, 367–373 (2016).

    PubMed  Google Scholar 

  99. Falzarano, S. M. et al. Clinicopathologic features and outcomes of anterior-dominant prostate cancer: implications for diagnosis and treatment. Prostate Cancer Prostatic Dis. 23, 435–440 (2020).

    CAS  PubMed  Google Scholar 

  100. Al-Ahmadie, H. A. et al. Anterior-predominant prostatic tumors: zone of origin and pathologic outcomes at radical prostatectomy. Am. J. Surg. Pathol. 32, 229–235 (2008).

    PubMed  Google Scholar 

  101. Packer, J. R. & Maitland, N. J. The molecular and cellular origin of human prostate cancer. Biochim. Biophys. Acta Mol. Cell Res. 1863, 1238–1260 (2016).

    CAS  Google Scholar 

  102. Karthaus, W. R. et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Grisanzio, C. & Signoretti, S. p63 in prostate biology and pathology. J. Cell. Biochem. 103, 1354–1368 (2008).

    CAS  PubMed  Google Scholar 

  104. Zhang, D., Zhao, S., Li, X., Kirk, J. S. & Tang, D. G. Prostate luminal progenitor cells in development and cancer. Trends Cancer 4, 769–783 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 96 (2018).

    PubMed Central  Google Scholar 

  106. Levesque, C. & Nelson, P. S. Cellular constituents of the prostate stroma: key contributors to prostate cancer progression and therapy resistance. Cold Spring Harb. Perspect. Med. 8, a030510 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Barclay, W. W., Woodruff, R. D., Hall, M. C. & Cramer, S. D. A system for studying epithelial-stromal interactions reveals distinct inductive abilities of stromal cells from benign prostatic hyperplasia and prostate cancer. Endocrinology 146, 13–18 (2005).

    CAS  PubMed  Google Scholar 

  108. Hägglöf, C. & Bergh, A. The stroma — a key regulator in prostate function and malignancy. Cancers 4, 531–548 (2012).

    PubMed  PubMed Central  Google Scholar 

  109. Shiga, K. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers 7, 2443–2458 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Gleason, D. F. Classification of prostatic carcinomas. Cancer Chemother. Rep. 50, 125–128 (1966).

    CAS  PubMed  Google Scholar 

  111. Epstein, J. I., Allsbrook, W. C., Amin, M. B., Egevad, L. L. & Bjartell, A. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 29, 1228–1242 (2005).

    PubMed  Google Scholar 

  112. van Leenders, G. J. L. H., van der Kwast, T. H. & Iczkowski, K. A. The 2019 International Society of Urological Pathology consensus conference on prostate cancer grading. Eur. Urol. 79, 707–709 (2021).

    PubMed  Google Scholar 

  113. Epstein, J. I. et al. The 2019 Genitourinary Pathology Society (GUPS) white paper on contemporary grading of prostate cancer. Arch. Pathol. Lab. Med. 21231, 1–33 (2020).

    Google Scholar 

  114. Epstein, J. I. et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur. Urol. 69, 428–435 (2016).

    PubMed  Google Scholar 

  115. Berney, D. M. et al. Validation of a contemporary prostate cancer grading system using prostate cancer death as outcome. Br. J. Cancer 114, 1078–1083 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Rao, V. et al. Validation of the WHO 2016 new Gleason score of prostatic carcinoma. Urol. Ann. 10, 324 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. He, J. et al. Validation of a contemporary five-tiered Gleason grade grouping using population-based data. Eur. Urol. 71, 760–763 (2017).

    PubMed  Google Scholar 

  118. Gleason, D. F. & Mellinger, G. T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111, 58–64 (1974).

    CAS  PubMed  Google Scholar 

  119. Bjartell, A. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Eur. Urol. 49, 758–759 (2006).

    PubMed  Google Scholar 

  120. Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma definition of grading system. Am. J. Surg. Pathol. 40, 244–252 (2016).

    PubMed  Google Scholar 

  121. Wang, E. Understanding genomic alterations in cancer genomes using an integrative network approach. Cancer Lett. 340, 261–269 (2013).

    CAS  PubMed  Google Scholar 

  122. Stoyanova, T. et al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc. Natl Acad. Sci. USA 110, 20111–20116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, X. et al. Identification of a Zeb1 expressing basal stem cell subpopulation in the prostate. Nat. Commun. 11, 706 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chua, C. W. et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16, 951–961 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat. Cell Biol. 14, 1131–1138 (2012).

    CAS  PubMed  Google Scholar 

  126. Toivanen, R., Mohan, A. & Shen, M. M. Basal progenitors contribute to repair of the prostate epithelium following induced luminal anoikis. Stem Cell Rep. 6, 660–667 (2016).

    CAS  Google Scholar 

  127. Wang, Z. A. et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15, 274–283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Xin, L., Lukacs, R. U., Lawson, D. A., Cheng, D. & Witte, O. N. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cell 25, 2760–2769 (2007).

    CAS  Google Scholar 

  129. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Barros-Silva, J. D. et al. Single-cell analysis identifies LY6D as a marker linking castration-resistant prostate luminal cells to prostate progenitors and cancer. Cell Rep. 25, 3504–3518.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Collins, A. T., Habib, F. K., Maitland, N. J. & Neal, D. E. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J. Cell Sci. 114, 3865–72 (2001).

    CAS  PubMed  Google Scholar 

  132. Hudson, D. L. et al. Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J. Histochem. Cytochem. 49, 271–278 (2001).

    CAS  PubMed  Google Scholar 

  133. Joseph, D. B. et al. Urethral luminal epithelia are castration-insensitive cells of the proximal prostate. Prostate 80, 872–884 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Guo, W. et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat. Genet. 52, 908–918 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 10, 63–89 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Crowell, P. D. et al. Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep. 28, 1499–1510.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    PubMed  Google Scholar 

  138. Bekelman, J. E. et al. Clinically localized prostate cancer: ASCO clinical practice guideline endorsement of an American Urological Association/American Society for Radiation Oncology/Society of Urologic Oncology guideline. J. Clin. Oncol. 36, 3251–3258 (2018).

    PubMed  Google Scholar 

  139. Lebastchi, A. H., Gill, I. S. & Abreu, A. L. A focus on focal therapy for prostate cancer. JAMA Surg. 156, 881 (2021).

    PubMed  Google Scholar 

  140. Ahdoot, M., Lebastchi, A. H., Turkbey, B., Wood, B. & Pinto, P. A. Contemporary treatments in prostate cancer focal therapy. Curr. Opin. Oncol. 31, 200–206 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Tay, K. J. Focal therapy for prostate cancer — ready to be a standard of care? Prostate Cancer Prostatic Dis. https://doi.org/10.1038/s41391-021-00376-7 (2021).

    Article  PubMed  Google Scholar 

  142. Ball, M. W. Partial prostatectomy: technically feasible, but patient selection is paramount. Transl Androl. Urol. 6, 308–309 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Wu, Y.-T. & Chiang, P. H. Cohort study of high-intensity focused ultrasound in the treatment of localised prostate cancer treatment: medium-term results from a single centre. PLoS ONE 15, e0236026 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Reddy, D. & Dudderidge, T. High-intensity focused ultrasound focal therapy for prostate cancer. Trends Urol. Mens Health 11, 15–18 (2020).

    Google Scholar 

  145. Aydin, A. M. et al. Focal bipolar radiofrequency ablation for localized prostate cancer: safety and feasibility. Int. J. Urol. 27, 882–889 (2020).

    PubMed  Google Scholar 

  146. Prada, P. J. et al. Focal high-dose-rate brachytherapy for localized prostate cancer: toxicity and preliminary biochemical results. Strahlenther. Onkol. 196, 222–228 (2020).

    PubMed  Google Scholar 

  147. Erbersdobler, A. et al. Tumour grade, proliferation, apoptosis, microvessel density, p53, and bcl-2 in prostate cancers: differences between tumours located in the transition zone and in the peripheral zone. Eur. Urol. 41, 40–46 (2002).

    CAS  PubMed  Google Scholar 

  148. Mai, K. T. et al. Primary prostatic central zone adenocarcinoma. Pathol. Res. Pract. 204, 251–258 (2008).

    PubMed  Google Scholar 

  149. Sanda, M. G. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J. Urol. 199, 683–690 (2018).

    PubMed  Google Scholar 

  150. Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on prostate cancer — 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2020).

    PubMed  Google Scholar 

  151. Erbersdobler, A., Augustin, H., Schlomm, T. & Henke, R.-P. Prostate cancers in the transition zone: part 1; pathological aspects. BJU Int. 94, 1221–1225 (2004).

    PubMed  Google Scholar 

  152. National Institute for Health and Care Excellence. National Institute for Health and Care Excellence (NICE) clinical guideline: prostate cancer: diagnosis and treatment (CG175). NICE www.nice.org.uk/guidance/ng131 (2019).

  153. Tanimoto, A., Nakashima, J., Kohno, H., Shinmoto, H. & Kuribayashi, S. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J. Magn. Reson. Imaging 25, 146–152 (2007).

    PubMed  Google Scholar 

  154. Wang, M. et al. Whole mount histopathological correlation with prostate MRI in Grade I and II prostatectomy patients. Int. Urol. Nephrol. 51, 425–434 (2019).

    PubMed  Google Scholar 

  155. Parry, M. A. et al. Genomic evaluation of multiparametric magnetic resonance imaging-visible and -nonvisible lesions in clinically localised prostate cancer. Eur. Urol. Oncol. 2, 1–11 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Johnson, D. C. et al. Detection of individual prostate cancer foci via multiparametric magnetic resonance imaging. Eur. Urol. 75, 712–720 (2019).

    CAS  PubMed  Google Scholar 

  157. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Goldberg, H. et al. Comparison of magnetic resonance imaging and transrectal ultrasound informed prostate biopsy for prostate cancer diagnosis in biopsy naïve men: a systematic review and meta-analysis. J. Urol. 203, 1085–1093 (2020).

    PubMed  Google Scholar 

  159. Werahera, P. N. et al. Anterior tumors of the prostate: diagnosis and significance. Can. J. Urol. 20, 6897–6906 (2013).

    PubMed  PubMed Central  Google Scholar 

  160. Rouvière, O. et al. Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur. Radiol. 27, 1858–1866 (2017).

    PubMed  Google Scholar 

  161. Zakian, K. L. et al. Transition zone prostate cancer: metabolic characteristics at 1 H MR spectroscopic imaging — initial results. Radiology 229, 241–247 (2003).

    PubMed  Google Scholar 

  162. Berger, A. How does it work? Magnetic resonance imaging. BMJ 324, 35–35 (2002).

    PubMed  PubMed Central  Google Scholar 

  163. Chatterjee, A., Thomas, S. & Oto, A. Prostate MR: pitfalls and benign lesions. Abdom. Radiol. 45, 2154–2164 (2020).

    Google Scholar 

  164. Ishida, J. et al. Benign prostatic hyperplasia: value of MR imaging for determining histologic type. Radiology 190, 329–331 (1994).

    CAS  PubMed  Google Scholar 

  165. Hoeks, C. M. A. et al. Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266, 207–217 (2013).

    PubMed  Google Scholar 

  166. Yoshizako, T. et al. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol. 49, 1207–1213 (2008).

    CAS  PubMed  Google Scholar 

  167. Partin, A. W. et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J. Urol. 150, 110–114 (1993).

    CAS  PubMed  Google Scholar 

  168. Eifler, J. B. et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 111, 22–29 (2013).

    PubMed  Google Scholar 

  169. Stephenson, A. J. et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J. Clin. Oncol. 23, 7005–7012 (2005).

    PubMed  Google Scholar 

  170. Shariat, S. F., Karakiewicz, P. I., Roehrborn, C. G. & Kattan, M. W. An updated catalog of prostate cancer predictive tools. Cancer 113, 3075–3099 (2008).

    PubMed  Google Scholar 

  171. Shariat, S. F., Karakiewicz, P. I., Suardi, N. & Kattan, M. W. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin. Cancer Res. 14, 4400–4407 (2008).

    CAS  PubMed  Google Scholar 

  172. Loeb, S., Folkvaljon, Y., Bratt, O., Robinson, D. & Stattin, P. Defining intermediate risk prostate cancer suitable for active surveillance. J. Urol. 201, 292–299 (2019).

    PubMed  Google Scholar 

  173. Chang, A. J., Autio, K. A., Roach, M. & Scher, H. I. High-risk prostate cancer — classification and therapy. Nat. Rev. Clin. Oncol. 11, 308–323 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Wang, Y. et al. Prostate transitional zone volume-based nomogram for predicting prostate cancer and high progression prostate cancer in a real-world population. J. Cancer Res. Clin. Oncol. 143, 1157–1166 (2017).

    PubMed  Google Scholar 

  175. Djavan, B. Prostate biopsies and the Vienna nomograms. Eur. Urol. Suppl. 5, 500–510 (2006).

    Google Scholar 

  176. Chang, T.-H. et al. Zonal adjusted PSA density improves prostate cancer detection rates compared with PSA in Taiwanese males with PSA < 20 ng/ml. BMC Urol. 20, 151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lecuona, A. & Heyns, C. F. A prospective, randomized trial comparing the Vienna nomogram to an eight-core prostate biopsy protocol. BJU Int. 108, 204–208 (2011).

    PubMed  Google Scholar 

  178. Iremashvili, V. et al. Prostate cancers of different zonal origin: clinicopathological characteristics and biochemical outcome after radical prostatectomy. Urology 80, 1063–1069 (2012).

    PubMed  Google Scholar 

  179. Augustin, H. et al. Biochemical recurrence following radical prostatectomy: a comparison between prostate cancers located in different anatomical zones. Prostate 55, 48–54 (2003).

    PubMed  Google Scholar 

  180. Steuber, T. et al. Development and internal validation of preoperative transition zone prostate cancer nomogram. Urology 68, 1295–1300 (2006).

    PubMed  Google Scholar 

  181. Brand, L. J. & Dehm, S. M. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Curr. Drug Targets 14, 441–449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Abida, W. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl Acad. Sci. USA 116, 11428–11436 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Alexander, J. et al. Utility of single-cell genomics in diagnostic evaluation of prostate cancer. Cancer Res. 78, 348–358 (2018).

    CAS  PubMed  Google Scholar 

  185. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bose, R. et al. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546, 671–675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Cuzick, J. et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 106, 1095–1099 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8, e66855 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Den, R. B. et al. Decipher correlation patterns post prostatectomy: initial experience from 2 342 prospective patients. Prostate Cancer Prostatic Dis. 19, 374–379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Knezevic, D. et al. Analytical validation of the Oncotype DX prostate cancer assay — a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 14, 690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Cuzick, J. et al. Prognostic value of PTEN loss in men with conservatively managed localised prostate cancer. Br. J. Cancer 108, 2582–2589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Blume-Jensen, P. et al. Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin. Cancer Res. 21, 2591–2600 (2015).

    CAS  PubMed  Google Scholar 

  193. Pollack, A. et al. Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: Radiation Therapy Oncology Group trial 92–02. J. Clin. Oncol. 22, 2133–2140 (2004).

    CAS  PubMed  Google Scholar 

  194. Sanda, M. G. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part II: recommended approaches and details of specific care options. J. Urol. 199, 683–690 (2018).

    PubMed  Google Scholar 

  195. Salami, S. S. et al. Transcriptomic heterogeneity in multifocal prostate cancer. JCI Insight 3, 1–13 (2018).

    Google Scholar 

  196. Guo, C. C., Zuo, G., Cao, D., Troncoso, P. & Czerniak, B. A. Prostate cancer of transition zone origin lacks TMPRSS2–ERG gene fusion. Mod. Pathol. 22, 866–871 (2009).

    CAS  PubMed  Google Scholar 

  197. Colombo, P. et al. Molecular disorders in transitional vs. peripheral zone prostate adenocarcinoma. Int. J. Cancer 94, 383–389 (2001).

    CAS  PubMed  Google Scholar 

  198. Chandran, U. R. et al. Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer 5, 45 (2005).

    PubMed  PubMed Central  Google Scholar 

  199. Tyekucheva, S. et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat. Commun. 8, 420 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Stamey, T. A. et al. Genetic profiling of Gleason grade 4/5 prostate cancer: which is the best prostatic control tissue? J. Urol. 170, 2263–2268 (2003).

    PubMed  Google Scholar 

  201. Huggins, C. & Hodges, C. V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J. Clin. 22, 232–240 (1972).

    CAS  PubMed  Google Scholar 

  202. Singh, D. et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002).

    CAS  PubMed  Google Scholar 

  203. Feneley, M. R. et al. Zonal biochemical and morphological characteristics in BPH. Br. J. Urol. 75, 608–613 (1995).

    CAS  PubMed  Google Scholar 

  204. Falzarano, S. M. et al. ERG rearrangement is present in a subset of transition zone prostatic tumors. Mod. Pathol. 23, 1499–1506 (2010).

    PubMed  Google Scholar 

  205. Bismar, T. A. & Trpkov, K. TMPRSS2-ERG gene fusion in transition zone prostate cancer. Mod. Pathol. 23, 1040–1041 (2010).

    PubMed  Google Scholar 

  206. Guo, C. C., Troncoso, P., Wang, Y., Xiao, L. & Czerniak, B. A. Response to Bismar and Trpkov. Mod. Pathol. 23, 1041–1042 (2010).

    Google Scholar 

  207. Shaikhibrahim, Z. et al. The peripheral zone of the prostate is more prone to tumor development than the transitional zone: is the ETS family the key? Mol. Med. Rep. 5, 313–6 (2012).

    CAS  Google Scholar 

  208. Murillo-Garzón, V. & Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol. 14, 683–696 (2017).

    PubMed  Google Scholar 

  209. Yang, Y. Wnt signaling in development and disease. Cell Biosci. 2, 14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ren, X. et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ. Res. 115, 709–720 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. He, W. et al. FOXF2 acts as a crucial molecule in tumours and embryonic development. Cell Death Dis. 11, 424 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Van Der Heul-Nieuwenhuijsen, L., Dits, N., Van Ijcken, W., De Lange, D. & Jenster, G. The FOXF2 pathway in the human prostate stroma. Prostate 69, 1538–1547 (2009).

    PubMed  Google Scholar 

  213. Ormestad, M. et al. Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 133, 833–843 (2006).

    CAS  PubMed  Google Scholar 

  214. Noel, E. E. et al. Differential gene expression in the peripheral zone compared to the transition zone of the human prostate gland. Prostate Cancer Prostatic Dis. 11, 173–180 (2008).

    CAS  PubMed  Google Scholar 

  215. Doak, S. H. et al. Bone morphogenic factor gene dosage abnormalities in prostatic intraepithelial neoplasia and prostate cancer. Cancer Genet. Cytogenet. 176, 161–165 (2007).

    CAS  PubMed  Google Scholar 

  216. Voorneveld, P. W. et al. The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br. J. Cancer 112, 122–130 (2015).

    CAS  PubMed  Google Scholar 

  217. Ding, Z. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470, 269–273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Zadra, G., Photopoulos, C. & Loda, M. The fat side of prostate cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831, 1518–1532 (2013).

    CAS  Google Scholar 

  219. Carlsson, J. et al. Differences in microRNA expression during tumor development in the transition and peripheral zones of the prostate. BMC Cancer 13, 362 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Wang, J. et al. Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer. Oncotarget 7, 78566–78576 (2016).

    PubMed  PubMed Central  Google Scholar 

  221. Chu, M. et al. miR-15b negatively correlates with lipid metabolism in mammary epithelial cells. Am. J. Physiol. Physiol. 314, C43–C52 (2018).

    Google Scholar 

  222. Liu, Y., Liu, L., Jia, Y., Sun, Y. & Ma, F. Role of microRNA-15a-5p in the atherosclerotic inflammatory response and arterial injury improvement of diabetic by targeting FASN. Biosci. Rep. 39, 1–14 (2019).

    Google Scholar 

  223. Cancer Research UK. Prostate Cancer Treatment Statistics. Cancer Research UK https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer (2017).

  224. Presti, J. C. Prostate biopsy: current status and limitations. Rev. Urol. 9, 93–8 (2007).

    PubMed  PubMed Central  Google Scholar 

  225. Løvf, M. et al. Multifocal primary prostate cancer exhibits high degree of genomic heterogeneity. Eur. Urol. 75, 498–505 (2019).

    PubMed  Google Scholar 

  226. Yoosuf, N., Navarro, J. F., Salmén, F., Ståhl, P. L. & Daub, C. O. Identification and transfer of spatial transcriptomics signatures for cancer diagnosis. Breast Cancer Res. 22, 6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed  Google Scholar 

  228. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    CAS  PubMed  Google Scholar 

  229. Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma. Cancer Res. 78, 5970–5979 (2018).

    CAS  PubMed  Google Scholar 

  230. Eckstein, M. et al. Co-staining of microRNAs and their target proteins by miRNA in situ hybridization and immunohistofluorescence on prostate cancer tissue microarrays. Lab. Investig. 99, 1527–1534 (2019).

    CAS  PubMed  Google Scholar 

  231. Erbersdobler, A., Hammerer, P., Huland, H. & Henke, R.-P. Numerical chromosomal aberrations in transition zone carcinomas of the prostate. J. Urol. 158, 1594–1598 (1997).

    CAS  PubMed  Google Scholar 

  232. Humphrey, P. A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod. Pathol. 17, 292–306 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from CRUK Manchester Institute to E.B. and R.G.B. (C5759/A20971), and by funds from Prostate Cancer UK-Movember Prostate Cancer Centre of Excellence grant (CE013_2-004). A.A. is supported by CRUK via funding to the Cancer Research Manchester Centre (C147/A25254) and the Ministry of Health of Malaysia. A.C. and R.G.B. are supported by the NIHR Manchester Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

A.A., A.D.F. and E.B. researched data for the article and wrote the mansucript. All authors made substantial contributions to discussions of content and P.O., A.C., R.G.B. and E.B. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Esther Baena.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks Cristina Magi-Galluzzi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Du Feu, A., Oliveira, P. et al. Prostate zones and cancer: lost in transition?. Nat Rev Urol 19, 101–115 (2022). https://doi.org/10.1038/s41585-021-00524-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00524-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing