Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology

Key Points

  • Around 50% of patients with solid malignant tumours receive radiation therapy with curative or palliative intent at some point in the course of their disease. Early and late side effects limit radiation dose and might affect the long-term health-related quality of life of the patient.

  • The classical framework for discussing early and late side effects was the target-cell hypothesis: that the severity of side effects mainly reflected cell depletion as a result of the direct cell killing of a putative target cell leading to subsequent functional deficiency. This was the prevailing biological model until the mid 1990s.

  • Recent research in radiobiology and molecular pathology has caused a change of paradigm, particularly in the understanding of late effects: radiation induces a concerted biological response at the cell and tissue level effected by the early activation of cytokine cascades.

  • Fibrogenesis and excessive extracellular matrix and collagen deposition has a key role in the development and expression of many types of late effects. This can be seen as a wound-healing response gone wrong.

  • Transforming growth factor-β is a key fibrogenic cytokine. Its activation, signalling pathway and downstream effects are understood in some detail and offer a number of potential targets for therapeutic intervention in the pathogenic process. This 'bottom-up' approach has benefited from the translation of findings from molecular pathology studies of other diseases characterized by the excessive development of fibrosis.

  • Patient-to-patient variability in the response to radiotherapy represents a 'top-down' discovery strategy whereby clinical outcome data are linked with data from high-throughput assays.

  • Radiogenomics is the study of genetic variation as an explanation for inter-individual differences in radiotherapy response. Most of the research so far has concentrated on single-nucleotide polymorphisms (SNPs) in selected candidate genes, but genome-wide approaches seem to be within reach in the near future.

  • Advances in molecular radiation pathology combined with advances in clinical radiobiology, radiation therapy planning and delivery technology are likely to improve radiation therapy outcome within the next 5–10 years.


Radiation therapy has curative or palliative potential in roughly half of all incident solid tumours, and offers organ and function preservation in most cases. Unfortunately, early and late toxicity limits the deliverable intensity of radiotherapy, and might affect the long-term health-related quality of life of the patient. Recent progress in molecular pathology and normal-tissue radiobiology has improved the mechanistic understanding of late normal-tissue effects and shifted the focus from initial-damage induction to damage recognition and tissue remodelling. This stimulates research into new pharmacological strategies for preventing or reducing the side effects of radiation therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phases of normal wound healing and radiation-induced fibrosis over time.
Figure 2: Key processes in radiation fibrogenesis.


  1. 1

    Ringborg, U. et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001 — summary and conclusions. Acta Oncol. 42, 357–365 (2003).

    Article  Google Scholar 

  2. 2

    Center for Disease Control (USA). Cancer Survivorship — United States, 1971–2001. Center for Disease Control [online]

  3. 3

    Bentzen, S. M. & Overgaard, M. in Advances in Radiation Biology, Vol. 18 (eds Altman, K. I. & Lett, J. T.) 25–51 (Academic Press, San Diego, 1994).

    Google Scholar 

  4. 4

    Hawkins, M. M. Long-term survivors of childhood cancers: what knowledge have we gained? Nature Clin. Pract. Oncol. 1, 26–31 (2004).

    Article  Google Scholar 

  5. 5

    Yabroff, K. R., Lawrence, W. F., Clauser, S., Davis, W. W. & Brown, M. L. Burden of illness in cancer survivors: findings from a population-based national sample. J. Natl Cancer Inst. 96, 1322–1330 (2004). Important population-based study of the long-term consequences of cancer survivorship in 1,823 cancer survivors and 5,469 age-, sex- and educational-attainment-matched control subjects.

    Article  Google Scholar 

  6. 6

    Bentzen, S. M. et al. Normal tissue effects: reporting and analysis. Semin. Radiat. Oncol. 13, 189–202 (2003).

    Article  Google Scholar 

  7. 7

    Soares, H. P. et al. Evaluation of new treatments in radiation oncology: are they better than standard treatments? JAMA 293, 970–978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Allan, J. M. & Travis, L. B. Mechanisms of therapy-related carcinogenesis. Nature Rev. Cancer. 5, 943–955 (2005).

    Article  CAS  Google Scholar 

  9. 9

    Bentzen, S. M., Saunders, M. I., Dische, S. & Bond, S. J. Radiotherapy-related early morbidity in head and neck cancer: quantitative clinical radiobiology as deduced from the CHART trial. Radiother. Oncol. 60, 123–135 (2001).

    Article  CAS  Google Scholar 

  10. 10

    Bentzen, S. M., Thames, H. D. & Overgaard, M. Latent-time estimation for late cutaneous and subcutaneous radiation reactions in a single-follow-up clinical study. Radiother. Oncol. 15, 267–274 (1989).

    Article  CAS  Google Scholar 

  11. 11

    Prise, K. M., Schettino, G., Folkard, M. & Held, K. D. New insights on cell death from radiation exposure. Lancet Oncol. 6, 520–528 (2005).

    Article  CAS  Google Scholar 

  12. 12

    Loeffler, J. S., Harris, J. R., Dahlberg, W. K. & Little, J. B. In vitro radiosensitivity of human diploid fibroblasts derived from women with unusually sensitive clinical responses to definitive radiation therapy for breast cancer. Rad. Res. 121, 227–231 (1990). Pioneering study that initiated a whole field of research on the potential association between in vitro cellular radiosensitivity and clinical normal-tissue effects of radiotherapy.

    Article  CAS  Google Scholar 

  13. 13

    Brock, W. A. et al. Fibroblast radiosensitivity versus acute and late normal skin responses in patients treated for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 32, 1371–1379 (1995).

    Article  CAS  Google Scholar 

  14. 14

    Burnet, N. G. et al. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet 339, 1570–1571 (1992).

    Article  CAS  Google Scholar 

  15. 15

    Geara, F. B., Peters, L. J., Ang, K. K., Wike, J. L. & Brock, W. A. Prospective comparison of in vitro normal cell radiosensitivity and normal tissue reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 27, 1173–1179 (1993).

    Article  CAS  Google Scholar 

  16. 16

    Johansen, J., Bentzen, S. M., Overgaard, J. & Overgaard, M. Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy. Int. J. Radiat. Biol. 66, 407–412 (1994).

    Article  CAS  Google Scholar 

  17. 17

    Peacock, J. et al. Cellular radiosensitivity and complication risk after curative radiotherapy. Radiother. Oncol. 55, 173–178 (2000).

    Article  CAS  Google Scholar 

  18. 18

    Russell, N. S. et al. Low predictive value of intrinsic fibroblast radiosensitivity for fibrosis development following radiotherapy for breast cancer. Int. J. Radiat. Biol. 73, 661–670 (1998).

    Article  CAS  Google Scholar 

  19. 19

    Dorr, W. Three A's of repopulation during fractionated irradiation of squamous epithelia: Asymmetry loss, Acceleration of stem-cell divisions and Abortive divisions. Int. J. Radiat. Biol. 72, 635–643 (1997). A comprehensive overview of the experimental data underpinning our current model of the early effects of radiation therapy.

    Article  CAS  Google Scholar 

  20. 20

    Bentzen, S. M., Overgaard, M. & Thames, H. D. Fractionation sensitivity of a functional endpoint: impaired shoulder movement after postmastectomy radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 17, 531–537 (1989).

    Article  CAS  Google Scholar 

  21. 21

    Bentzen, S. M., Skoczylas, J. Z., Overgaard, M. & Overgaard, J. Radiotherapy-related lung fibrosis enhanced by tamoxifen. J. Natl Cancer Inst. 88, 918–922 (1996). Example of the quantitative analysis of clinical radiobiological data. This study showed that tamoxifen increases lung fibrosis after radiotherapy — a finding that was difficult to explain under the target-cell hypothesis.

    Article  CAS  Google Scholar 

  22. 22

    Koc, M., Polat, P. & Suma, S. Effects of tamoxifen on pulmonary fibrosis after cobalt-60 radiotherapy in breast cancer patients. Radiother. Oncol. 64, 171–175 (2002).

    Article  CAS  Google Scholar 

  23. 23

    Huang, E. Y. et al. Multivariate analysis of pulmonary fibrosis after electron beam irradiation for postmastectomy chest wall and regional lymphatics: evidence for non-dosimetric factors. Radiother. Oncol. 57, 91–96 (2000).

    Article  CAS  Google Scholar 

  24. 24

    Dorr, W., Bertmann, S. & Herrmann, T. Radiation induced lung reactions in breast cancer therapy. Modulating factors and consequential effects. Strahlenther. Onkol. 181, 567–573 (2005).

    Article  Google Scholar 

  25. 25

    Rubin, P., Johnston, C. J., Williams, J. P., McDonald, S. & Finkelstein, J. N. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 33, 99–109 (1995). Ground breaking study of the active biological response to irradiation — a paper that was much more controversial at the time of publication than it seems today.

    Article  CAS  Google Scholar 

  26. 26

    Williams, J., Chen, Y., Rubin, P., Finkelstein, J. & Okunieff, P. The biological basis of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 13, 182–188 (2003).

    Article  Google Scholar 

  27. 27

    Kelly, M., Kolb, M., Bonniaud, P. & Gauldie, J. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr. Pharm. Des. 9, 39–49 (2003).

    Article  CAS  Google Scholar 

  28. 28

    Grose, R. & Werner, S. Wound-healing studies in transgenic and knockout mice. Mol. Biotechnol. 28, 147–166 (2004).

    Article  CAS  Google Scholar 

  29. 29

    Border, W. A. & Noble, N. A. Transforming growth factor β in tissue fibrosis. N. Engl. J. Med. 331, 1286–1292 (1994).

    Article  CAS  Google Scholar 

  30. 30

    Moussad, E. E. & Brigstock, D. R. Connective tissue growth factor: what's in a name? Mol. Genet. Metab. 71, 276–292 (2000).

    Article  CAS  Google Scholar 

  31. 31

    Leask, A. & Abraham, D. J. TGFβ signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    Article  CAS  Google Scholar 

  32. 32

    Hatamochi, A., Mori, K. & Ueki, H. Role of cytokines in controlling connective tissue gene expression. Arch. Dermatol. Res. 287, 115–121 (1994).

    Article  CAS  Google Scholar 

  33. 33

    Kim, J. H. et al. Natural killer T (NKT) cells attenuate bleomycin-induced pulmonary fibrosis by producing interferon-γ. Am. J. Pathol. 167, 1231–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Chen, E. S., Greenlee, B. M., Wills-Karp, M. & Moller, D. R. Attenuation of lung inflammation and fibrosis in interferon-γ-deficient mice after intratracheal bleomycin. Am. J. Respir. Cell Mol. Biol. 24, 545–555 (2001).

    Article  CAS  Google Scholar 

  35. 35

    Gurujeyalakshmi, G. & Giri, S. N. Molecular mechanisms of antifibrotic effect of interferon γ in bleomycin-mouse model of lung fibrosis: downregulation of TGF-β and procollagen I and III gene expression. Exp. Lung Res. 21, 791–808 (1995).

    Article  CAS  Google Scholar 

  36. 36

    Martin, M., Lefaix, J. & Delanian, S. TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 47, 277–290 (2000). Another important paper in promoting the paradigm shift from target cells to concerted biological response in normal-tissue radiobiology.

    Article  CAS  Google Scholar 

  37. 37

    Eckes, B. et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol. 19, 325–332 (2000).

    Article  CAS  Google Scholar 

  38. 38

    Feng, X. H. & Derynck, R. Specificity and versatility in tgf-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21: 659–93., 659–693 (2005).

    Article  CAS  Google Scholar 

  39. 39

    Dumont, N. & Arteaga, C. L. Targeting the TGF β signaling network in human neoplasia. Cancer Cell. 3, 531–536 (2003).

    Article  CAS  Google Scholar 

  40. 40

    Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer. 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  41. 41

    Reiss, M. & Barcellos-Hoff, M. H. Transforming growth factor-β in breast cancer: a working hypothesis. Breast Cancer Res. Treat. 45, 81–95 (1997).

    Article  CAS  Google Scholar 

  42. 42

    Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J. & Massague, J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc. Natl Acad. Sci. USA 100, 8430–8435 (2003).

    Article  CAS  Google Scholar 

  43. 43

    Wakefield, L. M. & Roberts, A. B. TGF-β signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29 (2002).

    Article  CAS  Google Scholar 

  44. 44

    Lawrence, D. A. Latent-TGF-β: an overview. Mol. Cell Biochem. 219, 163–170 (2001).

    Article  CAS  Google Scholar 

  45. 45

    Ewan, K. B. et al. Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Res. 62, 5627–5631 (2002).

    CAS  Google Scholar 

  46. 46

    Ehrhart, E. J., Segarini, P., Tsang, M. L., Carroll, A. G. & Barcellos-Hoff, M. H. Latent transforming growth factor β1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J. 11, 991–1002 (1997).

    Article  CAS  Google Scholar 

  47. 47

    Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massague, J. Mechanism of activation of the TGF-β receptor. Nature. 370, 341–347 (1994).

    Article  CAS  Google Scholar 

  48. 48

    Attisano, L. & Wrana, J. L. Signal transduction by the TGF-β superfamily. Science. 296, 1646–1647 (2002).

    Article  CAS  Google Scholar 

  49. 49

    Bayreuther, K. et al. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc. Natl Acad. Sci. USA 85, 5112–5116 (1988).

    Article  CAS  Google Scholar 

  50. 50

    Herskind, C. & Rodemann, H. P. Spontaneous and radiation-induced differentiationof fibroblasts. Exp. Gerontol. 35, 747–755 (2000).

    Article  CAS  Google Scholar 

  51. 51

    Martin, G. M., Sprague, C. A., Norwood, T. H. & Pendergrass, W. R. Clonal selection, attenuation and differentiation in an in vitro model of hyperplasia. Am. J. Pathol. 74, 137–154 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Rodemann, H. P., Peterson, H. P., Schwenke, K. & von Wangenheim, K. H. Terminal differentiation of human fibroblasts is induced by radiation. Scanning Microsc. 5, 1135–1142 (1991).

    CAS  PubMed  Google Scholar 

  53. 53

    Herskind, C. et al. Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy. Radiother. Oncol. 47, 263–269 (1998).

    Article  CAS  Google Scholar 

  54. 54

    Russell, N. S. et al. In vitro differentiation characteristics of human skin fibroblasts: correlations with radiotherapy-induced breast fibrosis in patients. Int. J. Radiat. Biol. 76, 231–240 (2000).

    Article  CAS  Google Scholar 

  55. 55

    Kalluri, R. & Neilson, E. G. Epithelial–mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Roberts, A. B. et al. Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev. 17, 19–27 (2006).

    Article  CAS  Google Scholar 

  58. 58

    Abe, S. et al. Cells derived from the circulation contribute to the repair of lung injury. Am. J. Respir. Crit. Care Med. 170, 1158–1163 (2004).

    Article  Google Scholar 

  59. 59

    Epperly, M. W., Guo, H., Gretton, J. E. & Greenberger, J. S. Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 29, 213–224 (2003).

    Article  CAS  Google Scholar 

  60. 60

    Francois, S. et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells. 24, 1020–1029 (2006).

    Article  Google Scholar 

  61. 61

    Delanian, S. & Lefaix, J. L. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother. Oncol. 73, 119–131 (2004).

    Article  Google Scholar 

  62. 62

    Vujaskovic, Z. et al. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int. J. Radiat. Oncol. Biol. Phys. 50, 851–855 (2001).

    Article  CAS  Google Scholar 

  63. 63

    Nangaku, M. Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Nephron Exp. Nephrol. 98, e8–e12 (2004).

    Article  Google Scholar 

  64. 64

    Urquhart, D. S., Montgomery, H. & Jaffe, A. Assessment of hypoxia in children with cystic fibrosis. Arch. Dis. Child. 90, 1138–1143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Siegmund, S. V. & Brenner, D. A. Molecular pathogenesis of alcohol-induced hepatic fibrosis. Alcohol Clin. Exp. Res. 29, 102S–109S (2005).

    Article  CAS  Google Scholar 

  66. 66

    Mikkelsen, R. B. & Wardman, P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 22, 5734–5754 (2003). A comprehensive review of the role of ROS and RNS in cell–cell signalling after irradiation.

    Article  CAS  Google Scholar 

  67. 67

    Cadenas, E. & Davies, K. J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222–230 (2000).

    Article  CAS  Google Scholar 

  68. 68

    Kinnula, V. L. & Crapo, J. D. Superoxide dismutases in the lung and human lung diseases. Am. J. Respir. Crit. Care Med. 167, 1600–1619 (2003).

    Article  Google Scholar 

  69. 69

    Vaziri, N. D. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin. Nephrol. 24, 469–473 (2004).

    Article  CAS  Google Scholar 

  70. 70

    Fubini, B. & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516 (2003).

    Article  CAS  Google Scholar 

  71. 71

    Duprez, D. A. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J. Hypertens. 24, 983–991 (2006).

    Article  CAS  Google Scholar 

  72. 72

    Weir, M. R. & Dzau, V. J. The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am. J. Hypertens. 12, 205S–213S (1999).

    Article  CAS  Google Scholar 

  73. 73

    Robbins, M. E. & Diz, D. I. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys. 64, 6–12 (2006).

    Article  CAS  Google Scholar 

  74. 74

    Turesson, I. The progression rate of late radiation effects in normal tissues and its impact on dose-response relationships. Radiother. Oncol. 15, 217–226 (1989).

    Article  CAS  Google Scholar 

  75. 75

    Bentzen, S. M. & Overgaard, J. Patient-to-patient variability in the expression of radiation-induced normal-tissue injury. Sem. Rad. Oncol. 4, 68–80 (1994).

    Article  CAS  Google Scholar 

  76. 76

    Safwat, A., Bentzen, S. M., Turesson, I. & Hendry, J. H. Deterministic rather than stochastic factors explain most of the variation in the expression of skin telangiectasia after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 52, 198–204 (2002).

    Article  Google Scholar 

  77. 77

    Aziz, N. M. & Rowland, J. H. Trends and advances in cancer survivorship research: challenge and opportunity. Semin. Radiat. Oncol. 13, 248–266 (2003).

    Article  Google Scholar 

  78. 78

    Bentzen, S. M. High-tech in radiation oncology: should there be a ceiling? Int. J. Radiat. Oncol. Biol. Phys. 58, 320–330 (2004).

    Article  Google Scholar 

  79. 79

    Bentzen, S. M. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing. Radiother. Oncol. 43, 121–131 (1997).

    Article  CAS  Google Scholar 

  80. 80

    Gatti, R. A. The inherited basis of human radiosensitivity. Acta Oncol. 40, 702–711 (2001).

    Article  CAS  Google Scholar 

  81. 81

    Hall, J. The Ataxia-telangiectasia mutated gene and breast cancer: gene expression profiles and sequence variants. Cancer Lett. 227, 105–114 (2005).

    Article  CAS  Google Scholar 

  82. 82

    Swift, M., Reitnauer, P. J., Morrell, D. & Chase, C. L. Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med. 316, 1289–1294 (1987).

    Article  CAS  Google Scholar 

  83. 83

    Lange, E. et al. Localization of an ataxia-telangiectasia gene to an approximately 500-kb interval on chromosome 11q23. 1: linkage analysis of 176 families by an international consortium. Am. J. Hum. Genet. 57, 112–119 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Gatti, R. A. et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature. 336, 577–580 (1988).

    Article  CAS  Google Scholar 

  85. 85

    Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Zgheib, O. et al. ATM signaling and 53BP1. Radiother. Oncol. 76, 119–122 (2005).

    Article  CAS  Google Scholar 

  87. 87

    Taylor, A. M. et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258, 427–429 (1975). An important paper providing what remains the most convincing demonstration of a genotype associated with a hyper-radiosensitive phenotype both in vitro and in the clinic.

    Article  CAS  Google Scholar 

  88. 88

    Abadir, R. & Hakami, N. Ataxia telangiectasia with cancer. An indication for reduced radiotherapy and chemotherapy doses. Br. J. Radiol. 56, 343–345 (1983).

    Article  CAS  Google Scholar 

  89. 89

    Hart, R. M., Kimler, B. F., Evans, R. G. & Park, C. H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasis. Int. J. Radiat. Oncol. Biol. Phys. 13, 1237–1240 (1987).

    Article  CAS  Google Scholar 

  90. 90

    Tamminga, R. Y., Dolsma, W. V., Leeuw, J. A. & Kampinga, H. H. Chemo- and radiosensitivity testing in a patient with ataxia telangiectasia and Hodgkin disease. Pediatr. Hematol. Oncol. 19, 163–171 (2002).

    Article  CAS  Google Scholar 

  91. 91

    Worgul, B. V. et al. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc. Natl Acad. Sci. USA 99, 9836–9839 (2002).

    Article  CAS  Google Scholar 

  92. 92

    Broeks, A. et al. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am. J. Hum. Genet. 66, 494–500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Appleby, J. M. et al. Absence of mutations in the ATM gene in breast cancer patients with severe responses to radiotherapy. Br. J. Cancer 76, 1546–1549 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Ramsay, J., Birrell, G. & Lavin, M. Testing for mutations of the ataxia telangiectasia gene in radiosensitive breast cancer patients. Radiother. Oncol. 47, 125–128 (1998).

    Article  CAS  Google Scholar 

  95. 95

    Shayeghi, M. et al. Heterozygosity for mutations in the ataxia telangiectasia gene is not a major cause of radiotherapy complications in breast cancer patients. Br. J. Cancer 78, 922–927 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 286, 1162–1166 (1999).

    Article  CAS  Google Scholar 

  97. 97

    Wang, H. C., Chou, W. C., Shieh, S. Y. & Shen, C. Y. Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res. 66, 1391–1400 (2006).

    Article  CAS  Google Scholar 

  98. 98

    Newman, B. et al. Frequency of breast cancer attributable to BRCA1 in a population-based series of American women. JAMA. 279, 915–921 (1998).

    Article  CAS  Google Scholar 

  99. 99

    Dumitrescu, R. G. & Cotarla, I. Understanding breast cancer risk-- where do we stand in 2005? J. Cell Mol. Med. 9, 208–221 (2005).

    Article  CAS  Google Scholar 

  100. 100

    Chen, S. et al. Characterization of BRCA1 and BRCA2 mutations in a large United States sample. J. Clin. Oncol. 24, 863–871 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Leong, T. et al. Mutation analysis of BRCA1 and BRCA2 cancer predisposition genes in radiation hypersensitive cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 48, 959–965 (2000).

    Article  CAS  Google Scholar 

  102. 102

    Gaffney, D. K. et al. Response to radiation therapy and prognosis in breast cancer patients with BRCA1 and BRCA2 mutations. Radiother. Oncol. 47, 129–136 (1998).

    Article  CAS  Google Scholar 

  103. 103

    Pierce, L. J. et al. Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J. Clin. Oncol. 18, 3360–3369 (2000).

    Article  CAS  Google Scholar 

  104. 104

    Andreassen, C. N., Alsner, J. & Overgaard, J. Does variability in normal tissue reactions after radiotherapy have a genetic basis--where and how to look for it? Radiother. Oncol 64, 131–140 (2002).

    Article  Google Scholar 

  105. 105

    Houlston, R. S. & Peto, J. The search for low-penetrance cancer susceptibility alleles. Oncogene. 23, 6471–6476 (2004).

    Article  CAS  Google Scholar 

  106. 106

    Imyanitov, E. N., Togo, A. V. & Hanson, K. P. Searching for cancer-associated gene polymorphisms: promises and obstacles. Cancer Lett. 204, 3–14 (2004).

    Article  CAS  Google Scholar 

  107. 107

    Ross, J. S. et al. Pharmacogenomics. Adv. Anat. Pathol. 11, 211–220 (2004).

    Article  CAS  Google Scholar 

  108. 108

    Andreassen, C. N. Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol. 44, 801–815 (2005). Up-to-date and comprehensive summary of the current studies into a genetic basis for clinical normal-tissue responsiveness.

    Article  Google Scholar 

  109. 109

    Bahlo, M. et al. Detecting genome wide haplotype sharing using SNP or microsatellite haplotype data. Hum. Genet. 119, 38–50 (2006).

    Article  CAS  Google Scholar 

  110. 110

    Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  Google Scholar 

  111. 111

    Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet. 6, 109–118 (2005).

    Article  CAS  Google Scholar 

  112. 112

    Bentzen, S. M. Radiobiological considerations in the design of clinical trials. Radiother. Oncol. 32, 1–11 (1994).

    Article  CAS  Google Scholar 

  113. 113

    Andreassen, C. N., Alsner, J., Overgaard, M. & Overgaard, J. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother. Oncol. 69, 127–135 (2003).

    Article  CAS  Google Scholar 

  114. 114

    Chang-Claude, J. et al. Association between polymorphisms in the DNA repair genes, XRCC1, APE1, and XPD and acute side effects of radiotherapy in breast cancer patients. Clin. Cancer Res. 11, 4802–4809 (2005).

    Article  CAS  Google Scholar 

  115. 115

    Quarmby, S. et al. Differential expression of cytokine genes in fibroblasts derived from skin biopsies of patients who developed minimal or severe normal tissue damage after radiotherapy. Radiat. Res. 157, 243–248 (2002).

    Article  CAS  Google Scholar 

  116. 116

    Rodningen, O. K., Overgaard, J., Alsner, J., Hastie, T. & Borresen-Dale, A. L. Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts. Radiother. Oncol. 77, 231–240 (2005).

    Article  CAS  Google Scholar 

  117. 117

    Kruse, J. J., te Poele, J. A., Russell, N. S., Boersma, L. J. & Stewart, F. A. Microarray analysis to identify molecular mechanisms of radiation-induced microvascular damage in normal tissues. Int. J. Radiat. Oncol. Biol. Phys. 58, 420–426 (2004).

    Article  CAS  Google Scholar 

  118. 118

    Snyder, A. R. & Morgan, W. F. Lack of consensus gene expression changes associated with radiation-induced chromosomal instability. DNA Repair (Amst.). 4, 958–970 (2005).

    Article  CAS  Google Scholar 

  119. 119

    Bentzen, S. M. et al. Clinical impact of dosimetry quality assurance programmes assessed by radiobiological modelling of data from the thermoluminescent dosimetry study of the European Organization for Research and Treatment of Cancer. Eur. J. Cancer 36, 615–620 (2000).

    Article  CAS  Google Scholar 

  120. 120

    West, C. M. et al. Molecular markers predicting radiotherapy response: report and recommendations from an International Atomic Energy Agency technical meeting. Int. J. Radiat. Oncol. Biol. Phys. 62, 1264–1273 (2005).

    Article  CAS  Google Scholar 

  121. 121

    Brizel, D. M. et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J. Clin. Oncol. 18, 3339–3345 (2000).

    Article  CAS  Google Scholar 

  122. 122

    Rades, D. et al. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother. Oncol. 70, 261–264 (2004).

    Article  CAS  Google Scholar 

  123. 123

    Lindegaard, J. C. & Grau, C. Has the outlook improved for amifostine as a clinical radioprotector? Radiother. Oncol. 57, 113–118 (2000).

    Article  CAS  Google Scholar 

  124. 124

    Stone, H. B., McBride, W. H. & Coleman, C. N. Modifying normal tissue damage postirradiation. Report of a workshop sponsored by the Radiation Research Program, National Cancer Institute, Bethesda, Maryland, September 6–8, 2000. Radiat. Res. 157, 204–223 (2002).

    Article  CAS  Google Scholar 

  125. 125

    Anscher, M. S. et al. Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 62, 255–259 (2005).

    Article  Google Scholar 

  126. 126

    Iyer, S., Wang, Z. G., Akhtari, M., Zhao, W. & Seth, P. Targeting TGFβ signaling for cancer therapy. Cancer Biol. Ther. 4, 261–266 (2005).

    Article  CAS  Google Scholar 

  127. 127

    Yingling, J. M., Blanchard, K. L. & Sawyer, J. S. Development of TGF-β signalling inhibitors for cancer therapy. Nature Rev. Drug Discov. 3, 1011–1022 (2004).

    Article  CAS  Google Scholar 

  128. 128

    Giri, S. N., Hyde, D. M. & Hollinger, M. A. Effect of antibody to transforming growth factor β on bleomycin induced accumulation of lung collagen in mice. Thorax 48, 959–966 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Rabbani, Z. N. et al. Soluble TGFβ type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. Int. J. Radiat. Oncol. Biol. Phys. 57, 563–572 (2003).

    Article  CAS  Google Scholar 

  130. 130

    Wang, Q., Hyde, D. M., Gotwals, P. J. & Giri, S. N. Effects of delayed treatment with transforming growth factor-beta soluble receptor in a three-dose bleomycin model of lung fibrosis in hamsters. Exp. Lung Res. 28, 405–417 (2002).

    Article  CAS  Google Scholar 

  131. 131

    Roberts, A. B. et al. Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest. 120, 43S–47S (2001).

    Article  CAS  Google Scholar 

  132. 132

    Ishida, W. et al. Intracellular TGF-β receptor blockade abrogates Smad-dependent fibroblast activation in vitro and in vivo. J. Invest. Dermatol. 126, 1733–1744 (2006).

    Article  CAS  Google Scholar 

  133. 133

    Xavier, S. et al. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-β signaling by halofuginone. J. Biol. Chem. 279, 15167–15176 (2004).

    Article  CAS  Google Scholar 

  134. 134

    Prosser, C. C., Yen, R. D. & Wu, J. Molecular therapy for hepatic injury and fibrosis: where are we? World J. Gastroenterol. 12, 509–515 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Epperly, M. W. et al. Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int. J. Radiat. Oncol. Biol. Phys. 43, 169–181 (1999).

    Article  CAS  Google Scholar 

  136. 136

    Giri, S. N., Biring, I., Nguyen, T., Wang, Q. & Hyde, D. M. Abrogation of bleomycin-induced lung fibrosis by nitric oxide synthase inhibitor, aminoguanidine in mice. Nitric. Oxide. 7, 109–118 (2002).

    Article  CAS  Google Scholar 

  137. 137

    Gurujeyalakshmi, G., Wang, Y. & Giri, S. N. Suppression of bleomycin-induced nitric oxide production in mice by taurine and niacin. Nitric Oxide 4, 399–411 (2000).

    Article  CAS  Google Scholar 

  138. 138

    Lefaix, J. L. et al. Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study. Int. J. Radiat. Oncol. Biol. Phys. 35, 305–312 (1996).

    Article  CAS  Google Scholar 

  139. 139

    Delanian, S. et al. Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide-dismutase-clinical-trial. Radiother. Oncol. 32, 12–20 (1994).

    Article  CAS  Google Scholar 

  140. 140

    Delanian, S., Porcher, R., Rudant, J. & Lefaix, J. L. Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J. Clin. Oncol. 23, 8570–8579 (2005).

    Article  Google Scholar 

  141. 141

    Delanian, S., Porcher, R., Balla-Mekias, S. & Lefaix, J. L. Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J. Clin. Oncol. 21, 2545–2550 (2003). 24 women with 29 fields of radiation fibrosis were randomized in a double-blind, placebo-controlled 2×2 clinical trial design of pentoxifylline and/or vitamin E. Regression of fibrosis was significantly greater in the combined therapy group than in any of three other groups.

    Article  CAS  Google Scholar 

  142. 142

    Ha, H. & Lee, H. B. Reactive oxygen species and matrix remodeling in diabetic kidney. J. Am. Soc. Nephrol. 14, S246–S249 (2003).

    Article  CAS  Google Scholar 

  143. 143

    Rezvani, M. et al. Modification of radiation myelopathy by the transplantation of neural stem cells in the rat. Radiat. Res. 156, 408–412 (2001).

    Article  CAS  Google Scholar 

  144. 144

    Lombaert, I. M. et al. Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin. Cancer Res. 12, 1804–1812 (2006).

    Article  CAS  Google Scholar 

  145. 145

    Moran, J. M., Elshaikh, M. A. & Lawrence, T. S. Radiotherapy: what can be achieved by technical improvements in dose delivery? Lancet Oncol. 6, 51–58 (2005).

    Article  Google Scholar 

  146. 146

    Bentzen, S. M. Radiation therapy: intensity modulated, image guided, biologically optimized and evidence based. Radiother. Oncol. 77, 227–230 (2005).

    Article  Google Scholar 

  147. 147

    Baumann, M., Holscher, T. & Begg, A. C. Towards genetic prediction of radiation responses: ESTRO's GENEPI project. Radiother. Oncol. 69, 121–125 (2003).

    Article  Google Scholar 

  148. 148

    Puck, T. T. & Marcus, P. I. Action of x-rays on mammalian cells. J. Exp. Med. 103, 653–666 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Thames, H. D. & Hendry, J. H. Fractionation in radiotherapy. Taylor & Francis, London (1987).

    Google Scholar 

  150. 150

    Meistrich, M. L., Hunter, N. R., Suzuki, N., Trostle, P. K. & Withers, H. R. Gradual regeneration of mouse testicular stem cells after exposure to ionizing radiation. Radiat. Res. 74, 349–362 (1978).

    Article  CAS  Google Scholar 

  151. 151

    Judas, L., Bentzen, S. M., Hansen, P. V. & Overgaard, J. Proliferative response of mouse spermatogonial stem cells after irradiation: a quantitative model analysis of experimental data. Cell Proliferation 29, 73–87 (1996).

    Article  CAS  Google Scholar 

  152. 152

    Bernier, J. Alteration of radiotherapy fractionation and concurrent chemotherapy: a new frontier in head and neck oncology? Nature Clinical Practice Oncology 2, 305–314 (2005).

    Article  Google Scholar 

  153. 153

    Bernier, J. & Bentzen, S. M. Altered fractionation and combined radio-chemotherapy approaches. Pioneering new opportunities in head and neck oncology. Eur. J. Cancer 39, 560–571 (2003).

    Article  CAS  Google Scholar 

  154. 154

    Bentzen, S. M., Overgaard, M. & Overgaard, J. Clinical correlations between late normal-tissue endpoints after radiotherapy: implications for predictive assays of radiosensitivity. Eur. J. Cancer 29A, 1373–1376 (1993).

    Article  CAS  Google Scholar 

  155. 155

    Tucker, S. L., Turesson, I. & Thames, H. D. Evidence for individual differences in the radiosensitivity of human skin. Eur. J. Cancer 28A, 1783–1791 (1992).

    Article  CAS  Google Scholar 

  156. 156

    Bentzen, S. M. & Overgaard, M. Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother. Oncol. 20, 159–165 (1991).

    Article  CAS  Google Scholar 

  157. 157

    Baumann, M. in Radiation sequelae (eds Dunst, J. & Sauer, R.) 3–12 (Springer-Verlag, Berlin-Heidelberg, 1995).

    Google Scholar 

  158. 158

    Holscher, T., Bentzen, S. M. & Baumann, M. Influence of connective tissue diseases on the expression of radiation side effects: A systematic review. Radiother. Oncol. 78, 123–130 (2006).

    Article  Google Scholar 

  159. 159

    Merrick, G. S. et al. Erectile function after permanent prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 52, 893–902 (2002).

    Article  Google Scholar 

  160. 160

    Honore, H. B., Bentzen, S. M., Moller, K. & Grau, C. Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother. Oncol. 65, 9–16 (2002).

    Article  Google Scholar 

  161. 161

    Pignon, T. et al. Age has no impact on acute and late toxicity of curative thoracic radiotherapy [see comments]. Radiother. Oncol. 46, 239–248 (1998).

    Article  CAS  Google Scholar 

Download references


S.B. is supported by the University of Wisconsin Comprehensive Cancer Center.

Author information



Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links


National Cancer Institute

breast cancer


Søren Bentzen’s homepage

European GENEPI normal-tissue bank


Cytokine cascade

Cytokines, low-molecular-weight intercellular messenger proteins, are often produced in a cascade: one cytokine stimulates its target cell to secrete additional cytokines.


Small secreted cytokines that signal for various cell types to move in a specific direction, typically up the gradient of chemokine concentration.


A chemotherapeutic antibiotic that functions by inducing DNA strand breaks, and which is therefore seen as a radiation-mimetic drug. Although the initial damage induction differs from that of radiation, it is probable that the mesenchymal-response pathway is similar for the two agents. It is often used to induce lung fibrosis in mouse models.

Tissue hypoxia

A pathological condition in which a tissue region is deprived of the normal physiological oxygen concentration.

Reactive oxygen and nitrogen species

Highly reactive molecules that include oxygen or nitrogen, such as free radicals or other highly reactive forms (for example, singlet oxygen, a meta-stable state of oxygen with higher energy than the triplet ground state).


The visible dilation of small vessels under the skin or a mucosal surface that can occur after radiation therapy, perhaps as a result of radiation-induced cell killing and the loss of other small vessels in the area.

Nijmegen breakage syndrome

A rare heritable disease characterized by an abnormally small head and underdeveloped brain, associated with chromosomal instability and a predisposition to cancer, especially lymphomas.

Fanconi anaemia

A rare heritable disease in which the bone marrow fails to produce platelets, red or white blood cells or a combination of the three. It is associated with a predisposition to cancer, particularly leukaemia.

Ataxia telangiectasia

A rare heritable disease characterized by progressive dysfunction of the cerebellum, the part of the brain that coordinates voluntary motion, and a predisposition to cancer, particularly lymphomas and leukaemia.

Single nucleotide polymorphisms

(SNP) An inter-individual variation in the DNA sequence that involves the substitution of a single nucleotide that occurs in more than 1% of the population.

Candidate gene

A gene whose function indicates that it could be mechanistically involved in a specific process, such as radiation-damage repair or tissue remodelling.

Genome-wide SNP genotyping

A strategy for trying to discover associations between SNPs in any human gene and a specific phenotype; for example, patients showing atypically strong side effects after radiotherapy.

Bonferroni correction

A multiple-comparisons correction that is applied to reduce the chance of spurious ('false-positive') findings when several statistical tests are conducted to analyse a data set.


Dryness of mouth caused by reduction in the secretion of saliva, a possible side effect of radiation therapy for cander of the head and neck region.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bentzen, S. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6, 702–713 (2006).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing