Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer

An Author Correction to this article was published on 18 February 2022

This article has been updated

Abstract

A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.

Key points

  • Targeted anticancer agents are commonly used in the treatment of various solid and haematological malignancies.

  • Not all tumours are sensitive to these agents, largely reflecting the lack of or inactivity of the targetable alteration.

  • Radiotherapy is also frequently used for the treatment of cancer, owing to its prominent cytostatic and cytotoxic effects on malignant cells.

  • A wide panel of cytoprotective pathways can be activated by radiotherapy, thus limiting therapeutic efficacy.

  • However, these signal transduction cascades can be effectively inhibited with targeted anticancer agents, potentially supporting superior treatment efficacy.

  • Radiotherapy stands out as a promising tool to elicit clinically actionable signalling pathways in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytoprotective pathways elicited by radiotherapy.
Fig. 2: Targeting the pro-survival pathways induced by radiotherapy in cancer.

Similar content being viewed by others

Change history

References

  1. Bedard, P. L., Hyman, D. M., Davids, M. S. & Siu, L. L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395, 1078–1088 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Boumahdi, S. & de Sauvage, F. J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19, 39–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Sotorasib edges closer to approval. Cancer Discov. 11, OF2 (2021).

    Article  Google Scholar 

  4. Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harmenberg, U., Hamdy, F. C., Widmark, A., Lennernäs, B. & Nilsson, S. Curative radiation therapy in prostate cancer. Acta Oncol. 50, 98–103 (2011).

    Article  PubMed  Google Scholar 

  7. Nakano, T., Ohno, T., Ishikawa, H., Suzuki, Y. & Takahashi, T. Current advancement in radiation therapy for uterine cervical cancer. J. Radiat. Res. 51, 1–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Spencer, K., Parrish, R., Barton, R. & Henry, A. Palliative radiotherapy. BMJ 360, k821 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Riet, F. G. et al. Preoperative radiotherapy in breast cancer patients: 32 years of follow-up. Eur. J. Cancer 76, 45–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Calvo, F. A. et al. ESTRO/ACROP IORT recommendations for intraoperative radiation therapy in primary locally advanced rectal cancer. Clin. Transl. Radiat. Oncol. 25, 29–36 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zaorsky, N. G. et al. The evolution of brachytherapy for prostate cancer. Nat. Rev. Urol. 14, 415–439 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pilié, P. G., Tang, C., Mills, G. B. & Yap, T. A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 16, 81–104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24, 1845–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodriguez-Ruiz, M. E., Vitale, I., Harrington, K. J., Melero, I. & Galluzzi, L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat. Immunol. 21, 120–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Dalwadi, S. M., Herman, J. M., Das, P. & Holliday, E. B. Novel radiotherapy technologies in the treatment of gastrointestinal malignancies. Hematol. Oncol. Clin. North. Am. 34, 29–43 (2020).

    Article  PubMed  Google Scholar 

  18. Oh, D. Y. & Bang, Y. J. HER2-targeted therapies–a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Guo, R. et al. MET-dependent solid tumours–molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol. 17, 569–587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rybstein, M. D., Bravo-San Pedro, J. M., Kroemer, G. & Galluzzi, L. The autophagic network and cancer. Nat. Cell Biol. 20, 243–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. McLaughlin, M. et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat. Rev. Cancer 20, 203–217 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vanneste, B. G. L. et al. Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology 9, 1832760 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moding, E. J., Kastan, M. B. & Kirsch, D. G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov. 12, 526–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Petroni, G. & Galluzzi, L. Impact of treatment schedule on the efficacy of cytostatic and immunostimulatory agents. Oncoimmunology 10, 1889101 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Coleman, C. N. et al. Radiation-induced adaptive response: new potential for cancer treatment. Clin. Cancer Res. 26, 5781–5790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, R. X. & Zhou, P. K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal. Transduct. Target. Ther. 5, 60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galluzzi, L. et al. Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869–1883 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashworth, A. & Lord, C. J. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Michels, J. et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 73, 2271–2280 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Taylor, A. M. et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258, 427–429 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Imray, F. P. & Kidson, C. Perturbations of cell-cycle progression in ɣ-irradiated ataxia telangiectasia and Huntington’s disease cells detected by DNA flow cytometric analysis. Mutat. Res. 112, 369–382 (1983).

    CAS  PubMed  Google Scholar 

  40. Carruthers, R. et al. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol. Oncol. 9, 192–203 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Golding, S. E. et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894–2902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vecchio, D. et al. Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019. Int. J. Cancer 135, 479–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, S., Li, Z., Yang, L., Shen, L. & Wang, Y. A potential new role of ATM inhibitor in radiotherapy: suppressing ionizing radiation-activated EGFR. Int. J. Radiat. Biol. 96, 461–468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeuchi, M. et al. Anti-tumor effect of inhibition of DNA damage response proteins, ATM and ATR, in endometrial cancer cells. Cancers 11, 1913 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  45. Durant, S. T. et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. 4, eaat1719 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karlin, J. et al. Orally bioavailable and blood-brain barrier-penetrating ATM inhibitor (AZ32) radiosensitizes intracranial gliomas in mice. Mol. Cancer Ther. 17, 1637–1647 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biddlestone-Thorpe, L. et al. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res. 19, 3189–3200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fokas, E. et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 3, e441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foote, K. M. et al. Discovery of 4-{4-[(3R)-3-methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J. Med. Chem.56, 2125–2138 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Dunne, V. et al. Inhibition of ataxia telangiectasia related-3 (ATR) improves therapeutic index in preclinical models of non-small cell lung cancer (NSCLC) radiotherapy. Radiother. Oncol. 124, 475–481 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Wengner, A. M. et al. The novel ATR inhibitor BAY 1895344 is efficacious as monotherapy and combined with DNA damage-inducing or repair-compromising therapies in preclinical cancer models. Mol. Cancer Ther. 19, 26–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Pires, I. M. et al. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br. J. Cancer 107, 291–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tu, X. et al. ATR inhibition is a promising radiosensitizing strategy for triple-negative breast cancer. Mol. Cancer Ther. 17, 2462–2472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zenke, F. T. et al. Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Mol. Cancer Ther. 19, 1091–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Fok, J. H. L. et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat. Commun. 10, 5065 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Timme, C. R., Rath, B. H., O’Neill, J. W., Camphausen, K. & Tofilon, P. J. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol. Cancer Ther. 17, 1207–1216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Willoughby, C. E. et al. Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy. J. Clin. Invest. 130, 258–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Yamazaki, T. et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 21, 1160–1171 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Feng, X. et al. ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways. EMBO J. 39, e104036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dillon, M. T. et al. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin. Cancer Res. 25, 3392–3403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Q. et al. Inhibition of ATM increases interferon signaling and sensitizes pancreatic cancer to immune checkpoint blockade therapy. Cancer Res. 79, 3940–3951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheng, H. et al. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma. J. Immunother. Cancer 8, e000340 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vendetti, F. P. et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Invest. 128, 3926–3940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. He, H., Chang, R., Zhang, T., Yang, C. & Kong, Z. ATM mediates DAB2IP-deficient bladder cancer cell resistance to ionizing radiation through the p38MAPK and NF-κB signaling pathway. Mol. Med. Rep. 16, 1216–1222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bian, L., Meng, Y., Zhang, M. & Li, D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol. Cancer 18, 169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fagan-Solis, K. D. et al. A P53-independent dna damage response suppresses oncogenic proliferation and genome instability. Cell Rep. 30, 1385–1399 e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mattiello, L. et al. The targeting of MRE11 or RAD51 sensitizes colorectal cancer stem cells to CHK1 inhibition. Cancers (Basel) 13, 1957 (2021).

    Article  CAS  Google Scholar 

  69. Manic, G. et al. Control of replication stress and mitosis in colorectal cancer stem cells through the interplay of PARP1, MRE11 and RAD51. Cell Death Differ. 28, 2060–2082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ho, V. et al. Overexpression of the MRE11-RAD50-NBS1 (MRN) complex in rectal cancer correlates with poor response to neoadjuvant radiotherapy and prognosis. BMC Cancer 18, 869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chang, L. et al. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer 16, 190 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Choudhury, A. et al. MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res. 70, 7017–7026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl Acad. Sci. USA 110, 2969–2974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nicholson, J. et al. E3 ligase cIAP2 mediates downregulation of MRE11 and radiosensitization in response to HDAC inhibition in bladder cancer. Cancer Res. 77, 3027–3039 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Groselj, B. et al. Radiosensitization in vivo by histone deacetylase inhibition with no increase in early normal tissue radiation toxicity. Mol. Cancer Ther. 17, 381–392 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Paillas, S. et al. The histone deacetylase inhibitor romidepsin spares normal tissues while acting as an effective radiosensitizer in bladder tumors in vivo. Int. J. Radiat. Oncol. Biol. Phys. 107, 212–221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Caron, M. C. et al. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat. Commun. 10, 2954 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Strickfaden, H. et al. Poly(ADP-ribosyl)ation-dependent transient chromatin decondensation and histone displacement following laser microirradiation. J. Biol. Chem. 291, 1789–1802 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, C. et al. PARP inhibitor olaparib increases the sensitization to radiotherapy in FaDu cells. J. Cell Mol. Med. 24, 2444–2450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bi, Y. et al. Radiosensitization by the PARP inhibitor olaparib in BRCA1-proficient and deficient high-grade serous ovarian carcinomas. Gynecol. Oncol. 150, 534–544 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Michmerhuizen, A. R. et al. PARP1 inhibition radiosensitizes models of inflammatory breast cancer to ionizing radiation. Mol. Cancer Ther. 18, 2063–2073 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cho, E. J. et al. Preclinical evaluation of radiation therapy of BRCA1-associated mammary tumors using a mouse model. Int. J. Biol. Sci. 17, 689–701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Soni, A. et al. Inhibition of Parp1 by BMN673 effectively sensitizes cells to radiotherapy by upsetting the balance of repair pathways processing DNA double-strand breaks. Mol. Cancer Ther. 17, 2206–2216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tuli, R. et al. Radiosensitization of pancreatic cancer cells in vitro and in vivo through poly (ADP-ribose) polymerase inhibition with ABT-888. Transl. Oncol. 7, 439–445 (2014).

    Article  PubMed Central  Google Scholar 

  86. Luo, J. et al. Fluzoparib increases radiation sensitivity of non-small cell lung cancer (NSCLC) cells without BRCA1/2 mutation, a novel PARP1 inhibitor undergoing clinical trials. J. Cancer Res. Clin. Oncol. 146, 721–737 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Ahmed, S. U. et al. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Res. 75, 4416–4428 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Chabanon, R. M. et al. PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer. Cancer Res. 81, 2888–2902 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Zhao, B., Rothenberg, E., Ramsden, D. A. & Lieber, M. R. The molecular basis and disease relevance of non-homologous DNA end joining. Nat. Rev. Mol. Cell Biol. 21, 765–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chabanon, R. M. et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J. Clin. Invest. 129, 1211–1228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhang, N. et al. PARP inhibitor niraparib as a radiosensitizer promotes antitumor immunity of radiotherapy in EGFR-mutated non-small cell lung cancer. Clin. Transl. Oncol. 23, 1827–1837 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Petroni, G., Buqué, A., Zitvogel, L., Kroemer, G. & Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 39, 310–345 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, W. J. et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 73, 1219–1231 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, P. et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol. 16, 864–875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yan, Y., Black, C. P. & Cowan, K. H. Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 26, 4689–4698 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Barker, H. E. et al. CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based chemoradiotherapy. Mol. Cancer Ther. 15, 2042–2054 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Richer, A. L. et al. WEE1 kinase inhibitor AZD1775 has preclinical efficacy in LKB1-deficient non-small cell lung cancer. Cancer Res. 77, 4663–4672 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, Y. Y. et al. Anti-tumor effects of Wee1 kinase inhibitor with radiotherapy in human cervical cancer. Sci. Rep. 9, 15394 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang, L. et al. Wee1 kinase inhibitor AZD1775 effectively sensitizes esophageal cancer to radiotherapy. Clin. Cancer Res. 26, 3740–3750 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mitchell, J. B. et al. In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin. Cancer Res. 16, 2076–2084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morgan, M. A. et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 70, 4972–4981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Patties, I. et al. The Chk1 inhibitor SAR-020106 sensitizes human glioblastoma cells to irradiation, to temozolomide, and to decitabine treatment. J. Exp. Clin. Cancer Res. 38, 420 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zeng, L., Nikolaev, A., Xing, C., Della Manna, D. L. & Yang, E. S. CHK1/2 inhibitor prexasertib suppresses NOTCH signaling and enhances cytotoxicity of cisplatin and radiation in head and neck squamous cell carcinoma. Mol. Cancer Ther. 19, 1279–1288 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Karnak, D. et al. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin. Cancer Res. 20, 5085–5096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Parsels, L. A. et al. PARP1 trapping and DNA replication stress enhance radiosensitization with combined WEE1 and PARP inhibitors. Mol. Cancer Res. 16, 222–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Vance, S. et al. Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1. Cell Cycle 10, 4321–4329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Parmar, K. et al. The CHK1 inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition. Clin. Cancer Res. 25, 6127–6140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Choi, C. et al. Checkpoint kinase 1 (CHK1) inhibition enhances the sensitivity of triple-negative breast cancer cells to proton irradiation via Rad51 downregulation. Int. J. Mol. Sci. 21, 2691 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  110. Raghavan, P. et al. AZD5438, an inhibitor of Cdk1, 2, and 9, enhances the radiosensitivity of non-small cell lung carcinoma cells. Int. J. Radiat. Oncol. Biol. Phys. 84, e507–e514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. O’Leary, B., Finn, R. S. & Turner, N. C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13, 417–430 (2016).

    Article  PubMed  Google Scholar 

  112. Bosacki, C. et al. CDK 4/6 inhibitors combined with radiotherapy: a review of literature. Clin. Transl. Radiat. Oncol. 26, 79–85 (2021).

    Article  PubMed  Google Scholar 

  113. Göttgens, E. L. et al. Inhibition of CDK4/CDK6 enhances radiosensitivity of HPV negative head and neck squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 105, 548–558 (2019).

    Article  PubMed  Google Scholar 

  114. Naz, S. et al. Abemaciclib, a selective CDK4/6 inhibitor, enhances the radiosensitivity of non-small cell lung cancer in vitro and in vivo. Clin. Cancer Res. 24, 3994–4005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huang, C. Y. et al. Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via inhibiting ataxia telangiectasia-mutated kinase-mediated DNA damage response. Eur. J. Cancer 102, 10–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Petroni, G. et al. Radiotherapy delivered before CDK4/6 inhibitors mediates superior therapeutic effects in ER(+) breast cancer. Clin. Cancer Res. 27, 1855–1863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xie, X. et al. CDK4/6 inhibitor palbociclib amplifies the radiosensitivity to nasopharyngeal carcinoma cells via mediating apoptosis and suppressing dna damage repair. Onco Targets Ther. 12, 11107–11117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fernández-Aroca, D. M. et al. P53 pathway is a major determinant in the radiosensitizing effect of palbociclib: implication in cancer therapy. Cancer Lett. 451, 23–33 (2019).

    Article  PubMed  Google Scholar 

  119. Hashizume, R. et al. Inhibition of DNA damage repair by the CDK4/6 inhibitor palbociclib delays irradiated intracranial atypical teratoid rhabdoid tumor and glioblastoma xenograft regrowth. Neuro Oncol. 18, 1519–1528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Patel, P. et al. Enhancing direct cytotoxicity and response to immune checkpoint blockade following ionizing radiation with Wee1 kinase inhibition. Oncoimmunology 8, e1638207 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang, B., Sun, L., Yuan, Z. & Tao, Z. Wee1 kinase inhibitor AZD1775 potentiates CD8+ T cell-dependent antitumour activity via dendritic cell activation following a single high dose of irradiation. Med. Oncol. 37, 66 (2020).

    Article  PubMed  Google Scholar 

  122. Chao, H. H. et al. Combination of CHEK1/2 inhibition and ionizing radiation results in abscopal tumor response through increased micronuclei formation. Oncogene 39, 4344–4357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Petroni, G., Formenti, S. C., Chen-Kiang, S. & Galluzzi, L. Immunomodulation by anticancer cell cycle inhibitors. Nat. Rev. Immunol. 20, 669–679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 19, 23–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Paluch-Shimon, S. & Cardoso, F. PARP inhibitors coming of age. Nat. Rev. Clin. Oncol. 18, 69–70 (2021).

    Article  PubMed  Google Scholar 

  126. Li, N. et al. An open-label, multicenter, single-arm, phase II study of fluzoparib in patients with germline BRCA1/2 mutation and platinum-sensitive recurrent ovarian cancer. Clin. Cancer Res. 27, 2452–2458 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Sonnenblick, A., de Azambuja, E., Azim, H. A. Jr. & Piccart, M. An update on PARP inhibitors–moving to the adjuvant setting. Nat. Rev. Clin. Oncol. 12, 27–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Karam, S. D. et al. Final report of a phase I trial of olaparib with cetuximab and radiation for heavy smoker patients with locally advanced head and neck cancer. Clin. Cancer Res. 24, 4949–4959 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Loap, P. et al. Combination of olaparib and radiation therapy for triple negative breast cancer: preliminary results of the RADIOPARP phase 1 trial. Int. J. Radiat. Oncol. Biol. Phys. 109, 436–440 (2021).

    Article  PubMed  Google Scholar 

  130. de Haan, R. et al. Phase I and pharmacologic study of olaparib in combination with high-dose radiotherapy with and without concurrent cisplatin for non-small cell lung cancer. Clin. Cancer Res. 27, 1256–1266 (2021).

    Article  PubMed  Google Scholar 

  131. Konstantinopoulos, P. A. et al. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncol. 20, 570–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Matulonis, U. A. et al. Phase I dose escalation study of the PI3kinase pathway inhibitor BKM120 and the oral poly (ADP ribose) polymerase (PARP) inhibitor olaparib for the treatment of high-grade serous ovarian and breast cancer. Ann. Oncol. 28, 512–518 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Yap, T. A. et al. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 38, 3195–3204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Thomas, A. et al. Phase I study of ATR inhibitor M6620 in combination with topotecan in patients with advanced solid tumors. J. Clin. Oncol. 36, 1594–1602 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Dillon, M. T. et al. PATRIOT: a phase I study to assess the tolerability, safety and biological effects of a specific ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in combination with palliative radiation therapy in patients with solid tumours. Clin. Transl. Radiat. Oncol. 12, 16–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim, S. T. et al. Phase I study of ceralasertib (AZD6738), a novel DNA damage repair agent, in combination with weekly paclitaxel in refractory cancer. Clin. Cancer Res. 27, 4700–4709 (2021).

    Article  PubMed  Google Scholar 

  137. van Bussel, M. T. J. et al. A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. Br. J. Cancer 124, 728–735 (2021).

    Article  PubMed  Google Scholar 

  138. Cuneo, K. C. et al. Dose escalation trial of the Wee1 inhibitor adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. J. Clin. Oncol. 37, 2643–2650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yang, E. S. et al. A phase 1b trial of prexasertib in combination with chemoradiation in patients with locally advanced head and neck squamous cell carcinoma. Radiother. Oncol. 157, 203–209 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Boss, D. S. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of the oral cyclin-dependent kinase inhibitor AZD5438 when administered at intermittent and continuous dosing schedules in patients with advanced solid tumours. Ann. Oncol. 21, 884–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Sausville, E. et al. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73, 539–549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Beddok, A. et al. Concurrent use of palbociclib and radiation therapy: single-centre experience and review of the literature. Br. J. Cancer 123, 905–908 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ratosa, I. et al. Cyclin-dependent kinase 4/6 inhibitors combined with radiotherapy for patients with metastatic breast cancer. Clin. Breast Cancer 20, 495–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Ippolito, E. et al. Concurrent radiotherapy with palbociclib or ribociclib for metastatic breast cancer patients: preliminary assessment of toxicity. Breast 46, 70–74 (2019).

    Article  PubMed  Google Scholar 

  145. Meattini, I., Desideri, I., Scotti, V., Simontacchi, G. & Livi, L. Ribociclib plus letrozole and concomitant palliative radiotherapy for metastatic breast cancer. Breast 42, 1–2 (2018).

    Article  PubMed  Google Scholar 

  146. Chowdhary, M. et al. Safety and efficacy of palbociclib and radiation therapy in patients with metastatic breast cancer: initial results of a novel combination. Adv. Radiat. Oncol. 4, 453–457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Guerini, A. E. et al. A single-center retrospective safety analysis of cyclin-dependent kinase 4/6 inhibitors concurrent with radiation therapy in metastatic breast cancer patients. Sci. Rep. 10, 13589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. DeWire, M. et al. A phase I/II study of ribociclib following radiation therapy in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). J. Neurooncol 149, 511–522 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Thorpe, L. M., Yuzugullu, H. & Zhao, J. J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 15, 7–24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 366, 714–723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ruiz-Saenz, A. et al. HER2 amplification in tumors activates PI3K/Akt signaling independent of HER3. Cancer Res. 78, 3645–3658 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tsay, J. J. et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am. J. Respir. Crit. Care Med. 198, 1188–1198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hopkins, B. D., Goncalves, M. D. & Cantley, L. C. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat. Rev. Endocrinol. 16, 276–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    Article  PubMed  Google Scholar 

  157. Lockney, N. A. et al. PIK3CA mutation is associated with increased local failure in lung stereotactic body radiation therapy (SBRT). Clin. Transl. Radiat. Oncol. 7, 91–93 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lockney, N. A. et al. Phosphatidylinositol-3-kinase mutations are associated with increased local failure in brain metastases treated with radiation. Int. J. Radiat. Oncol. Biol. Phys. 101, 833–844 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Zafarana, G. et al. Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer 118, 4053–4062 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Ang, K. K. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62, 7350–7356 (2002).

    CAS  PubMed  Google Scholar 

  161. Chua, D. T., Nicholls, J. M., Sham, J. S. & Au, G. K. Prognostic value of epidermal growth factor receptor expression in patients with advanced stage nasopharyngeal carcinoma treated with induction chemotherapy and radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Brollo, J. et al. Locoregional recurrence in patients with HER2 positive breast cancer. Breast 22, 856–862 (2013).

    Article  PubMed  Google Scholar 

  163. Green, M. M. et al. Expression of vascular endothelial growth factor (VEGF) in locally invasive prostate cancer is prognostic for radiotherapy outcome. Int. J. Radiat. Oncol. Biol. Phys. 67, 84–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Yoshimoto, Y. et al. Mutation profiling of uterine cervical cancer patients treated with definitive radiotherapy. Gynecol. Oncol. 159, 546–553 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Darwis, N. D. M. et al. FGFR signaling as a candidate therapeutic target for cancers resistant to carbon ion radiotherapy. Int. J. Mol. Sci. 20, 4563 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  166. Chen, D. J. & Nirodi, C. S. The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin. Cancer Res. 13, 6555–6560 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Li, H. F., Kim, J. S. & Waldman, T. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat. Oncol. 4, 43 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chinnaiyan, P. et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res. 65, 3328–3335 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Park, C. M. et al. Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res. 66, 8511–8519 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Cao, N. et al. NF-kappaB-mediated HER2 overexpression in radiation-adaptive resistance. Radiat. Res. 171, 9–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rose, Li,Y. et al. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat. Commun. 11, 394 (2020).

    Article  Google Scholar 

  172. De Bacco, F. et al. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl Cancer Inst. 103, 645–661 (2011).

    Article  PubMed  Google Scholar 

  173. Luttich, L. et al. Tyrosine kinase c-MET as therapeutic target for radiosensitization of head and neck squamous cell carcinomas. Cancers 13, 1865 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nisa, L. et al. Targeting the MET receptor tyrosine kinase as a strategy for radiosensitization in locoregionally advanced head and neck squamous cell carcinoma. Mol. Cancer Ther. 19, 614–626 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Sofia Vala, I. et al. Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE 5, e11222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gorski, D. H. et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59, 3374–3378 (1999).

    CAS  PubMed  Google Scholar 

  177. Knizetova, P. et al. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 7, 2553–2561 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Gomez-Roman, N. et al. Radiation responses of 2D and 3D glioblastoma cells: a novel, 3D-specific radioprotective role of VEGF/Akt signaling through functional activation of NHEJ. Mol. Cancer Ther. 19, 575–589 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Ma, J. et al. Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair. Cancer Cell 35, 504–518.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lammering, G., Valerie, K., Lin, P. S., Hewit, T. H. & Schmidt-Ullrich, R. K. Radiation-induced activation of a common variant of EGFR confers enhanced radioresistance. Radiother. Oncol. 72, 267–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Lammering, G. et al. EGFRvIII-mediated radioresistance through a strong cytoprotective response. Oncogene 22, 5545–5553 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Chang, L. et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 4, e875 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ni, J. et al. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int. J. Biochem. Cell Biol. 45, 2736–2748 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Kim, I. A. et al. Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines. Cancer Res. 65, 7902–7910 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Brognard, J., Clark, A. S., Ni, Y. & Dennis, P. A. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986–3997 (2001).

    CAS  PubMed  Google Scholar 

  188. Hasslacher, S. et al. Inhibition of PI3K signalling increases the efficiency of radiotherapy in glioblastoma cells. Int. J. Oncol. 53, 1881–1896 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Shi, F. et al. The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines. Neuroscience 346, 298–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Park, J. H. et al. Radiosensitization of the PI3K inhibitor HS-173 through reduction of DNA damage repair in pancreatic cancer. Oncotarget 8, 112893–112906 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zumsteg, Z. S. et al. Taselisib (GDC-0032), a potent β-sparing small molecule inhibitor of PI3K, radiosensitizes head and neck squamous carcinomas containing activating PIK3CA alterations. Clin. Cancer Res. 22, 2009–2019 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Glorieux, M., Dok, R. & Nuyts, S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci. Rep. 10, 16208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Djuzenova, C. S. et al. Differential effects of the Akt inhibitor MK-2206 on migration and radiation sensitivity of glioblastoma cells. BMC Cancer 19, 299 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Miyasaka, A. et al. PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer. Gynecol. Oncol. 138, 174–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Yu, C. C. et al. Targeting the PI3K/AKT/mTOR signaling pathway as an effectively radiosensitizing strategy for treating human oral squamous cell carcinoma in vitro and in vivo. Oncotarget 8, 68641–68653 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Eke, I. et al. Exploiting radiation-induced signaling to increase the susceptibility of resistant cancer cells to targeted drugs: AKT and mTOR inhibitors as an example. Mol. Cancer Ther. 17, 355–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Chuang, F. C. et al. PI3k inhibitors (BKM120 and BYL719) as radiosensitizers for head and neck squamous cell carcinoma during radiotherapy. PLoS ONE 16, e0245715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Juvekar, A. et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2, 1048–1063 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gonzalez-Billalabeitia, E. et al. Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. Cancer Discov. 4, 896–904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bian, X. et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene 37, 341–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Philip, C. A. et al. Inhibition of PI3K-AKT-mTOR pathway sensitizes endometrial cancer cell lines to PARP inhibitors. BMC Cancer 17, 638 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lammering, G. et al. Inhibition of the type III epidermal growth factor receptor variant mutant receptor by dominant-negative EGFR-CD533 enhances malignant glioma cell radiosensitivity. Clin. Cancer Res. 10, 6732–6743 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Akashi, Y. et al. Enhancement of the antitumor activity of ionising radiation by nimotuzumab, a humanised monoclonal antibody to the epidermal growth factor receptor, in non-small cell lung cancer cell lines of differing epidermal growth factor receptor status. Br. J. Cancer 98, 749–755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Raben, D. et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin. Cancer Res. 11, 795–805 (2005).

    Article  CAS  PubMed  Google Scholar 

  205. Yu, T. et al. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells. Oncotarget 7, 79089–79100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Huang, T. et al. Pyrotinib enhances the radiosensitivity of HER2‑overexpressing gastric and breast cancer cells. Oncol. Rep. 44, 2634–2644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wu, S. et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat. Cell Biol. 21, 1027–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Candas-Green, D. et al. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat. Commun. 11, 4591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cao, C. et al. Vascular endothelial growth factor tyrosine kinase inhibitor AZD2171 and fractionated radiotherapy in mouse models of lung cancer. Cancer Res. 66, 11409–11415 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Melsens, E. et al. The VEGFR inhibitor cediranib improves the efficacy of fractionated radiotherapy in a colorectal cancer xenograft model. Eur. Surg. Res. 58, 95–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Liao, J. et al. Apatinib potentiates irradiation effect via suppressing PI3K/AKT signaling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 38, 454 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Chen, L. et al. VEGF knockdown enhances radiosensitivity of nasopharyngeal carcinoma by inhibiting autophagy through the activation of mTOR pathway. Sci. Rep. 10, 16328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. SenthilKumar, G. et al. FGFR inhibition enhances sensitivity to radiation in non-small cell lung cancer. Mol. Cancer Ther. 19, 1255–1265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. De Bacco, F. et al. MET inhibition overcomes radiation resistance of glioblastoma stem-like cells. EMBO Mol. Med. 8, 550–568 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Truman, J. P. et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS ONE 5, e12310 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Bonner, J. A. et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 11, 21–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Mesia, R. et al. Chemoradiotherapy with or without panitumumab in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-1): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 16, 208–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. Giralt, J. et al. Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 16, 221–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Bonomo, P. et al. Incidence of skin toxicity in squamous cell carcinoma of the head and neck treated with radiotherapy and cetuximab: a systematic review. Crit. Rev. Oncol. Hematol. 120, 98–110 (2017).

    Article  PubMed  Google Scholar 

  222. Tougeron, D. et al. Skin inflammatory response and efficacy of anti-epidermal growth factor receptor therapy in metastatic colorectal cancer (CUTACETUX). Oncoimmunology 9, 1848058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Zheng, M. H. et al. Combining whole-brain radiotherapy with gefitinib/erlotinib for brain metastases from non-small-cell lung cancer: a meta-analysis. Biomed. Res. Int. 2016, 5807346 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Kulinich, D. P. et al. Radiotherapy versus combination radiotherapy-bevacizumab for the treatment of recurrent high-grade glioma: a systematic review. Acta Neurochir. 163, 1921–1934 (2021).

    Article  PubMed  Google Scholar 

  225. Andronesi, O. C. et al. Early changes in glioblastoma metabolism measured by MR spectroscopic imaging during combination of anti-angiogenic cediranib and chemoradiation therapy are associated with survival. NPJ Precis. Oncol. 1, 20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Batchelor, T. T. et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl Acad. Sci. USA 110, 19059–19064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhao, F. et al. Apatinib alone or combined with radiotherapy in metastatic prostate cancer: results from a pilot, multicenter study. Oncotarget 8, 110774–110784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Yamamoto, N. et al. Phase 2 study of nimotuzumab in combination with concurrent chemoradiotherapy in patients with locally advanced non-small-cell lung cancer. Clin. Lung Cancer 22, 134–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Du, X. J. et al. Efficacy and safety of nimotuzumab in addition to radiotherapy and temozolomide for cerebral glioblastoma: a phase II multicenter clinical trial. J. Cancer 10, 3214–3223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Fleischhack, G. et al. Nimotuzumab and radiotherapy for treatment of newly diagnosed diffuse intrinsic pontine glioma (DIPG): a phase III clinical study. J. Neurooncol 143, 107–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Dunn, L. A. et al. A phase 1b study of cetuximab and BYL719 (Alpelisib) concurrent with intensity modulated radiation therapy in stage III-IVB head and neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 106, 564–570 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Day, D. et al. Phase I trial of alpelisib in combination with concurrent cisplatin-based chemoradiotherapy in patients with locoregionally advanced squamous cell carcinoma of the head and neck. Oral. Oncol. 108, 104753 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. McGowan, D. R. et al. Buparlisib with thoracic radiotherapy and its effect on tumour hypoxia: a phase I study in patients with advanced non-small cell lung carcinoma. Eur. J. Cancer 113, 87–95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wen, P. Y. et al. Phase I, open-label, multicentre study of buparlisib in combination with temozolomide or with concomitant radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. ESMO Open 5, e000673 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Vanacker, H., Cassier, P. A. & Bachelot, T. The complex balance of PI3K inhibition. Ann. Oncol. 32, 127–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Wise-Draper, T. M. et al. A phase Ib study of the dual PI3K/mTOR inhibitor dactolisib (BEZ235) combined with everolimus in patients with advanced solid malignancies. Target. Oncol. 12, 323–332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Rodon, J. et al. Phase 1/1b dose escalation and expansion study of BEZ235, a dual PI3K/mTOR inhibitor, in patients with advanced solid tumors including patients with advanced breast cancer. Cancer Chemother. Pharmacol. 82, 285–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Salazar, R. et al. Phase II study of BEZ235 versus everolimus in patients with mammalian target of rapamycin inhibitor-naive advanced pancreatic neuroendocrine tumors. Oncologist 23, 766–e90 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Carlo, M. I. et al. A phase Ib study of BEZ235, a dual inhibitor of phosphatidylinositol 3-Kinase (PI3K) and mammalian target of rapamycin (mTOR), in patients with advanced renal cell carcinoma. Oncologist 21, 787–788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Narayan, V. et al. Phase 1 trial of everolimus and radiation therapy for salvage treatment of biochemical recurrence in prostate cancer patients following prostatectomy. Int. J. Radiat. Oncol. Biol. Phys. 97, 355–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  241. Gelsomino, F. et al. A dose-finding and biomarker evaluation phase Ib study of everolimus in association with 5-fluorouracil and pelvic radiotherapy as neoadjuvant treatment of locally advanced rectal cancer (E-LARC study). Clin. Colorectal Cancer 16, 410–415.e1 (2017).

    Article  PubMed  Google Scholar 

  242. Chinnaiyan, P. et al. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro Oncol. 20, 666–673 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Cao, L. et al. Trastuzumab improves locoregional control in HER2-positive breast cancer patients following adjuvant radiotherapy. Medicine 95, e4230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Jeon, S. H. et al. Effects of trastuzumab on locoregional recurrence in human epidermal growth factor receptor 2-overexpressing breast cancer patients treated with chemotherapy and radiotherapy. Breast Cancer Res. Treat. 172, 619–626 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Sun, G. Y. et al. Trastuzumab provides a comparable prognosis in patients with HER2-positive breast cancer to those with HER2-negative breast cancer: post hoc analyses of a randomized controlled trial of post-mastectomy hypofractionated radiotherapy. Front. Oncol. 10, 605750 (2020).

    Article  PubMed  Google Scholar 

  246. Abi Jaoude, J. et al. De-intensifying radiation therapy in HER-2 positive breast cancer: to boost or not to boost? Int. J. Radiat. Oncol. Biol. Phys. 108, 1040–1046 (2020).

    Article  PubMed  Google Scholar 

  247. Chumsri, S. et al. Incidence of late relapses in patients with HER2-positive breast cancer receiving adjuvant trastuzumab: combined analysis of NCCTG N9831 (Alliance) and NRG Oncology/NSABP B-31. J. Clin. Oncol. 37, 3425–3435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Bonzano, E., Guenzi, M. & Corvò, R. Cardiotoxicity assessment after different adjuvant hypofractionated radiotherapy concurrently associated with trastuzumab in early breast cancer. In Vivo 32, 879–882 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Sayan, M. et al. Acute cardiotoxicity with concurrent trastuzumab and hypofractionated radiation therapy in breast cancer patients. Front. Oncol. 9, 970 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Khan, M., Zhao, Z., Arooj, S., Zheng, T. & Liao, G. Lapatinib plus local radiation therapy for brain metastases from HER-2 positive breast cancer patients and role of trastuzumab: a systematic review and meta-analysis. Front. Oncol. 10, 576926 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Harrington, K. et al. Randomised phase II study of oral lapatinib combined with chemoradiotherapy in patients with advanced squamous cell carcinoma of the head and neck: rationale for future randomised trials in human papilloma virus-negative disease. Eur. J. Cancer 49, 1609–1618 (2013).

    Article  CAS  PubMed  Google Scholar 

  252. Harrington, K. et al. Postoperative adjuvant lapatinib and concurrent chemoradiotherapy followed by maintenance lapatinib monotherapy in high-risk patients with resected squamous cell carcinoma of the head and neck: a phase III, randomized, double-blind, placebo-controlled study. J. Clin. Oncol. 33, 4202–4209 (2015).

    Article  CAS  PubMed  Google Scholar 

  253. Lolkema, M. P. et al. The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation. Clin. Cancer Res. 21, 2297–2304 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  PubMed  Google Scholar 

  255. Kirshner, J. et al. Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res. 66, 10861–10869 (2006).

    Article  CAS  PubMed  Google Scholar 

  256. Liu, Q. et al. Subjugation of TGFβ signaling by human papilloma virus in head and neck squamous cell carcinoma shifts DNA repair from homologous recombination to alternative end joining. Clin. Cancer Res. 24, 6001–6014 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Bouquet, F. et al. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin. Cancer Res. 17, 6754–6765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Hardee, M. E. et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res. 72, 4119–4129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zhang, M. et al. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 71, 7155–7167 (2011).

    Article  CAS  PubMed  Google Scholar 

  260. Gonzalez-Junca, A. et al. Positron emission tomography imaging of functional transforming growth factor β (TGFβ) activity and benefit of TGFβ inhibition in irradiated intracranial tumors. Int. J. Radiat. Oncol. Biol. Phys. 109, 527–539 (2021).

    Article  PubMed  Google Scholar 

  261. Du, S. et al. Attenuation of the DNA damage response by transforming growth factor-beta inhibitors enhances radiation sensitivity of non-small-cell lung cancer cells in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 91, 91–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  262. Bellomo, C., Caja, L. & Moustakas, A. Transforming growth factor β as regulator of cancer stemness and metastasis. Br. J. Cancer 115, 761–769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Biswas, S. et al. Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J. Clin. Invest. 117, 1305–1313 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Vanpouille-Box, C. et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Rodríguez-Ruiz, M. E. et al. TGFβ blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol. Cancer Ther. 18, 621–631 (2019).

    Article  PubMed  Google Scholar 

  266. Rodriguez-Ruiz, M. E. et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 8, e1655964 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med. 10, eaan5488 (2018).

    Article  PubMed  Google Scholar 

  269. Wang, S. et al. Plasma Levels of IL-8 and TGF-β1 predict radiation-induced lung toxicity in non-small cell lung cancer: a validation study. Int. J. Radiat. Oncol. Biol. Phys. 98, 615–621 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Kim, H. et al. LXA(4)-FPR2 signaling regulates radiation-induced pulmonary fibrosis via crosstalk with TGF-β/Smad signaling. Cell Death Dis. 11, 653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Han, G. et al. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat. Med. 19, 421–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Lee, J. W. et al. Inhibition of Smad3 expression in radiation-induced fibrosis using a novel method for topical transcutaneous gene therapy. Arch. Otolaryngol. Head. Neck Surg. 136, 714–719 (2010).

    Article  PubMed  Google Scholar 

  273. Boerma, M., Wang, J., Sridharan, V., Herbert, J. M. & Hauer-Jensen, M. Pharmacological induction of transforming growth factor-beta1 in rat models enhances radiation injury in the intestine and the heart. PLoS ONE 8, e70479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Flechsig, P. et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals. Clin. Cancer Res. 18, 3616–3627 (2012).

    Article  CAS  PubMed  Google Scholar 

  275. Luo, J. et al. Smad7 promotes healing of radiotherapy-induced oral mucositis without compromising oral cancer therapy in a xenograft mouse model. Clin. Cancer Res. 25, 808–818 (2019).

    Article  CAS  PubMed  Google Scholar 

  276. Ciardiello, D., Elez, E., Tabernero, J. & Seoane, J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 31, 1336–1349 (2020).

    Article  CAS  PubMed  Google Scholar 

  277. Formenti, S. C. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin. Cancer Res. 24, 2493–2504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Formenti, S. C. et al. Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients. J. Immunother. Cancer 7, 177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  279. De Martino, M. et al. Activin a promotes regulatory T-cell-mediated immunosuppression in irradiated breast cancer. Cancer Immunol. Res. 9, 89–102 (2021).

    Article  PubMed  Google Scholar 

  280. Wick, A. et al. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest. New Drugs 38, 1570–1579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Vanpouille-Box, C. & Formenti, S. C. Dual transforming growth factor-β and programmed death-1 blockade: a strategy for immune-excluded tumors? Trends Immunol. 39, 435–437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Galluzzi, L., Bravo-San, J. M. P., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Jin, X. et al. Role of autophagy in high linear energy transfer radiation-induced cytotoxicity to tumor cells. Cancer Sci. 105, 770–778 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Galati, S., Boni, C., Gerra, M. C., Lazzaretti, M. & Buschini, A. Autophagy: a player in response to oxidative stress and DNA damage. Oxid. Med. Cell Longev. 2019, 5692958 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Wang, W. J. et al. NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. Acta Pharmacol. Sin. 34, 681–690 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Cao, C. et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 66, 10040–10047 (2006).

    Article  CAS  PubMed  Google Scholar 

  288. Albert, J. M., Kim, K. W., Cao, C. & Lu, B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol. Cancer Ther. 5, 1183–1189 (2006).

    Article  CAS  PubMed  Google Scholar 

  289. Woo, Y. et al. Rapamycin promotes ROS-mediated cell death via functional inhibition of xCT expression in melanoma under γ-irradiation. Front. Oncol. 11, 665420 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Zhuang, W. et al. Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity. Int. J. Cancer 129, 2720–2731 (2011).

    Article  CAS  PubMed  Google Scholar 

  291. Saleh, A. D. et al. Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle 12, 1955–1963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Simone, B. A. et al. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle 15, 2265–2274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Classen, F. et al. Autophagy induced by ionizing radiation promotes cell death over survival in human colorectal cancer cells. Exp. Cell Res. 374, 29–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  294. Galluzzi, L. & Green, D. R. Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Liu, E. Y. et al. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc. Natl Acad. Sci. USA 112, 773–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Hewitt, G. & Korolchuk, V. I. Repair, reuse, recycle: the expanding role of autophagy in genome maintenance. Trends Cell Biol. 27, 340–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  298. Wang, Y. et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol. Cell 63, 34–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  299. Park, J. M., Tougeron, D., Huang, S., Okamoto, K. & Sinicrope, F. A. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One 9, e100819 (2014).

    Article  PubMed  Google Scholar 

  300. Chen, X. et al. Autophagy enhanced the radioresistance of non-small cell lung cancer by regulating ROS level under hypoxia condition. Int. J. Radiat. Biol. 93, 764–770 (2017).

    Article  CAS  PubMed  Google Scholar 

  301. Chaachouay, H. et al. AMPK-independent autophagy promotes radioresistance of human tumor cells under clinical relevant hypoxia in vitro. Radiother. Oncol. 116, 409–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  302. Jing, Q. et al. Wnt3a promotes radioresistance via autophagy in squamous cell carcinoma of the head and neck. J. Cell Mol. Med. 23, 4711–4722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Hu, J. L. et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 7, 16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Zheng, X. et al. Inhibiting autophagy with chloroquine enhances the anti-tumor effect of high-LET carbon ions via ER stress-related apoptosis. Med. Oncol. 34, 25 (2017).

    Article  PubMed  Google Scholar 

  305. Tseng, H. C. et al. Sensitizing effect of 3-methyladenine on radiation-induced cytotoxicity in radio-resistant HepG2 cells in vitro and in tumor xenografts. Chem. Biol. Interact. 192, 201–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  306. Chen, Y. et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol. Med. Rep. 12, 1645–1652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Ko, A. et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 21, 92–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  308. Lin, W. et al. Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury. Sci. Rep. 5, 12362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Xu, F. et al. Autophagy promotes the repair of radiation-induced DNA damage in bone marrow hematopoietic cells via enhanced STAT3 signaling. Radiat. Res. 187, 382–396 (2017).

    Article  CAS  PubMed  Google Scholar 

  310. Xu, F. et al. Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy. Sci. Rep. 7, 45385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Janji, B., Hasmim, M., Parpal, S., Berchem, G. & Noman, M. Z. Firing up the cold tumors by targeting Vps34. Oncoimmunology 9, 1809936 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Arensman, M. D. et al. Anti-tumor immunity influences cancer cell reliance upon ATG7. Oncoimmunology 9, 1800162 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Pietrocola, F., Bravo-San Pedro, J. M., Galluzzi, L. & Kroemer, G. Autophagy in natural and therapy-driven anticancer immunosurveillance. Autophagy 13, 2163–2170 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Manic, G., Obrist, F., Kroemer, G., Vitale, I. & Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell Oncol. 1, e29911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Muller, R. Systemic toxicity of chloroquine and hydroxychloroquine: prevalence, mechanisms, risk factors, prognostic and screening possibilities. Rheumatol. Int. 41, 1189–1202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Rosenfeld, M. R. et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10, 1359–1368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Compter, I. et al. Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: a phase IB trial. Autophagy 17, 2604–2612 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Rojas-Puentes, L. L. et al. Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. Radiat. Oncol. 8, 209 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Eldredge, H. B. et al. Concurrent whole brain radiotherapy and short-course chloroquine in patients with brain metastases: a pilot trial. J. Radiat. Oncol. 2, 315–321 (2013).

    Article  CAS  Google Scholar 

  320. Clarke, A. J. & Simon, A. K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 19, 170–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  321. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Roach, M. C., Bradley, J. D. & Robinson, C. G. Optimizing radiation dose and fractionation for the definitive treatment of locally advanced non-small cell lung cancer. J. Thorac. Dis. 10, S2465–S2473 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Stollings, L. M. et al. Immune modulation by volatile anesthetics. Anesthesiology 125, 399–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  324. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  325. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  326. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

    Article  PubMed  Google Scholar 

  327. Lhuillier, C., Vanpouille-Box, C., Galluzzi, L., Formenti, S. C. & Demaria, S. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin. Cancer Biol. 52, 125–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  328. Landman, Y. et al. Durvalumab after concurrent chemotherapy and high-dose radiotherapy for locally advanced non-small cell lung cancer. Oncoimmunology 10, 1959979 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

    Article  CAS  PubMed  Google Scholar 

  330. Nishino, M., Ramaiya, N. H., Hatabu, H. & Hodi, F. S. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 14, 655–668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Paz-Ares, L. et al. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann. Oncol. 31, 798–806 (2020).

    Article  CAS  PubMed  Google Scholar 

  332. Theelen, W. et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 5, 1276–1282 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Sun, X. S. et al. Debio 1143 and high-dose cisplatin chemoradiotherapy in high-risk locoregionally advanced squamous cell carcinoma of the head and neck: a double-blind, multicentre, randomised, phase 2 study. Lancet Oncol. 21, 1173–1187 (2020).

    Article  CAS  PubMed  Google Scholar 

  334. Le Tourneau, C. et al. Phase I trial of debio 1143, an antagonist of inhibitor of apoptosis proteins, combined with cisplatin chemoradiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck. Clin. Cancer Res. 26, 6429–6436 (2020).

    Article  PubMed  Google Scholar 

  335. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  336. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  337. Lei, G. et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Ye, L. F. et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol. 15, 469–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Lhuillier, C. et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J. Clin. Invest. 131, e138740 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  340. Wennerberg, E. et al. Immune recognition of irradiated cancer cells. Immunol. Rev. 280, 220–230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Yamazaki, T. & Galluzzi, L. Mitochondrial control of innate immune signaling by irradiated cancer cells. Oncoimmunology 9, 1797292 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Turchan, W. T., Pitroda, S. P. & Weichselbaum, R. R. Radiotherapy and immunotherapy combinations in the treatment of patients with metastatic disease: current status and future focus. Clin. Cancer Res. 27, 5188 (2021).

    Article  CAS  PubMed  Google Scholar 

  344. Batlle, E. & Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  347. Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & Lopez-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. 10, eaat7807 (2018).

    Article  PubMed  Google Scholar 

  348. Jobling, M. F. et al. Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species. Radiat. Res. 166, 839–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  349. Barcellos-Hoff, M. H. & Cucinotta, F. A. New tricks for an old fox: impact of TGFβ on the DNA damage response and genomic stability. Sci. Signal. 7, re5 (2014).

    Article  PubMed  Google Scholar 

  350. Wiegman, E. M., Blaese, M. A., Loeffler, H., Coppes, R. P. & Rodemann, H. P. TGFβ-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFβ-receptor I signalling. Radiother. Oncol. 83, 289–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  351. Galluzzi, L. et al. Molecular definitions of autophagy and related processes. EMBO J. 36, 1811–1836 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Galluzzi, L. et al. Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856–880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. White, E., Lattime, E. C. & Guo, J. Y. Autophagy regulates stress responses, metabolism, and anticancer immunity. Trends Cancer 7, 778–789 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of L.C.C. is supported by US National Institutes of Health (NIH) P01 (#P01CA120964) and R35 (#R35CA197588) grants. The work of S.C.F. is supported by a Breakthrough Level 2 grant from the US Department of Defense (DoD), Breast Cancer Research Program (BRCP) (#BC180476) and by the 2019 Laura Ziskin Prize in Translational Research (#ZP-6177) from Stand Up to Cancer (SU2C). The work of L.G. is supported by a Breakthrough Level 2 grant from the US DoD BRCP (#BC180476P1), by the 2019 Laura Ziskin Prize in Translational Research (#ZP-6177, PI: Formenti) from SU2C, by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Chen-Kiang) grant from the Leukaemia and Lymphoma Society (LLS), by a startup grant from the Department of Radiation Oncology at Weill Cornell Medicine (New York, USA), by a Rapid Response Grant from the Functional Genomics Initiative (New York, USA), by industrial collaborations with Lytix (Oslo, Norway) and Phosplatin (New York, USA), and by donations from Phosplatin (New York, USA), the Luke Heller TECPR2 Foundation (Boston, USA), Onxeo (Paris, France), Ricerchiamo (Brescia, Italy) and Sotio a.s. (Prague, Czech Republic).

Author information

Authors and Affiliations

Authors

Contributions

L.G. and S.C.F. conceived the article. G.P. and L.G. wrote the first version of the manuscript with critical input from L.C.C., L.S. and S.C.F. G.P. prepared display items under supervision from L.G. All authors approve the final version of the article.

Corresponding author

Correspondence to Lorenzo Galluzzi.

Ethics declarations

Competing interests

L.S. has received research funding from Puretech. L.C.C. has acted as a consultant and/or advisor to Agios Pharmaceuticals, Faeth Therapeutics, Larkspur Therapeutics and Volastra Therapeutics, has received research funding from Petra Pharmaceuticals and is a co-founder of, and holds equity in, Agios Pharmaceuticals, Faeth Therapeutics, Larkspur Therapeutics and Volastra Therapeutics. S.C.F. has acted as a consultant and/or advisor to AstraZeneca, Bayer, Bristol Myers Squibb, Eisai, Elekta, EMD Serono, GlaxoSmithKline, Janssen, MedImmune, Merck US, Regeneron, Varian and ViewRay, and has received research funding from Bristol Myers Squibb, Eli-Lilly, Merck, Regeneron and Varian; and other support from Pfizer. L.G. has acted as a consultant and/or advisor to AstraZeneca, Boehringer Ingelheim, Inzen, The Longevity Labs, the Luke Heller TECPR2 Foundation, OmniSEQ and Onxeo, and has received research funding from Lytix, and Phosplatin. G.P. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks E. Dikomey, Y. Li, Y. Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petroni, G., Cantley, L.C., Santambrogio, L. et al. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 19, 114–131 (2022). https://doi.org/10.1038/s41571-021-00579-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00579-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer