Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis

Abstract

Malignant tumours can spread to lymph nodes through lymphatic vessels. Recent studies show that tumours produce a range of growth factors that directly or indirectly stimulate lymphatic vessel growth (lymphangiogenesis) and lymphatic metastasis. These findings indicate that tumour lymphangiogenesis, similar to haemangiogenesis, is a complex process that is regulated by multiple growth factors. Understanding the underlying mechanisms by which tumours induce lymphangiogenesis might provide important information for the therapeutic intervention of metastatic spread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The haemangiogenic switch and potential lymphangiogenic switch.
Figure 2: Crosstalk between tumour cells, blood vessel endothelial cells and lymphatic endothelial cells.
Figure 3: Relationship between haemangiogenesis and lymphangiogenesis.
Figure 4: Collaborative signalling systems.
Figure 5: Multiple roles of platelet-derived growth factor-BB.
Figure 6: The role of inflammation in lymphangiogenesis.

Similar content being viewed by others

References

  1. Etzioni, R. et al. The case for early detection. Nature Rev. Cancer 3, 243–252 (2003).

    CAS  Google Scholar 

  2. Kuroda, H., Sakamoto, G., Ohnisi, K. & Itoyama, S. Clinical and pathologic features of invasive micropapillary carcinoma. Breast Cancer 11, 169–174 (2004).

    PubMed  Google Scholar 

  3. Moskowitz, M. et al. Breast cancer screening. Preliminary report of 207 biopsies performed in 4,128 volunteer screenees. Cancer 36, 2245–2250 (1975).

    CAS  PubMed  Google Scholar 

  4. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  PubMed  Google Scholar 

  5. Porter, G. J. et al. Patterns of metastatic breast carcinoma: influence of tumour histological grade. Clin. Radiol. 59, 1094–1098 (2004).

    CAS  PubMed  Google Scholar 

  6. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  Google Scholar 

  7. Fujisawa, T., Yamaguchi, Y., Saitoh, Y., Hiroshima, K. & Ohwada, H. Blood and lymphatic vessel invasion as prognostic factors for patients with primary resected nonsmall cell carcinoma of the lung with intrapulmonary metastases. Cancer 76, 2464–2470 (1995).

    CAS  PubMed  Google Scholar 

  8. Taubert, H. et al. Detection of disseminated tumor cells in peripheral blood of patients with breast cancer: correlation to nodal status and occurrence of metastases: lymphogenous and hematogenous metastasis of Lewis lung carcinoma in the mouse. Gynecol. Oncol. 92, 256–261 (2004).

    PubMed  Google Scholar 

  9. Weiss, L. & Ward, P. M. Lymphogenous and hematogenous metastasis of Lewis lung carcinoma in the mouse. Int. J. Cancer 40, 570–574 (1987).

    CAS  PubMed  Google Scholar 

  10. Achen, M. G., McColl, B. K. & Stacker, S. A. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7, 121–127 (2005).

    CAS  PubMed  Google Scholar 

  11. Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nature Rev. Cancer 2, 573–583 (2002).

    CAS  Google Scholar 

  12. Pepper, M. S. & Skobe, M. Lymphatic endothelium: morphological, molecular and functional properties. J. Cell Biol. 163, 209–213 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Witte, M. H. & Witte, C. L. Lymphatics and blood vessels, lymphangiogenesis and hemangiogenesis: from cell biology to clinical medicine. Lymphology 20, 257–266 (1987).

    CAS  PubMed  Google Scholar 

  14. Leak, L. V. Studies on the permeability of lymphatic capillaries. J. Cell Biol. 50, 300–323 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Saharinen, P., Tammela, T., Karkkainen, M. J. & Alitalo, K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 25, 387–395 (2004).

    CAS  PubMed  Google Scholar 

  16. Isaka, N., Padera, T. P., Hagendoorn, J., Fukumura, D. & Jain, R. K. Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res. 64, 4400–4404 (2004).

    CAS  PubMed  Google Scholar 

  17. Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002).

    CAS  PubMed  Google Scholar 

  18. Kim, U., Park, H. C. & Choi, K. H. Differential permeability of lymphatic and blood vessels in determining the route of metastasis as demonstrated by indirect lymphography. Clin. Exp. Metastasis 6, 291–299 (1988).

    CAS  PubMed  Google Scholar 

  19. Alitalo, K., Mohla, S. & Ruoslahti, E. Lymphangiogenesis and cancer: meeting report. Cancer Res 64, 9225–9229 (2004).

    CAS  PubMed  Google Scholar 

  20. Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med. 7, 192–198 (2001).

    CAS  PubMed  Google Scholar 

  21. Cao, R. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6, 333–345 (2004).

    CAS  PubMed  Google Scholar 

  22. Chang, L., Kaipainen, A. & Folkman, J. Lymphangiogenesis new mechanisms. Ann. NY Acad. Sci. 979, 111–119 (2002).

    CAS  PubMed  Google Scholar 

  23. Chang, L. K. et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc. Natl Acad. Sci. USA 101, 11658–11663 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gale, N. W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev. Cell 3, 411–423 (2002).

    CAS  PubMed  Google Scholar 

  25. Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA 99, 8868–8873 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Veikkola, T. & Alitalo, K. Dual role of Ang2 in postnatal angiogenesis and lymphangiogenesis. Dev. Cell 3, 302–304 (2002).

    CAS  PubMed  Google Scholar 

  27. Vincent, L. & Rafii, S. Vascular frontiers without borders: multifaceted roles of platelet-derived growth factor (PDGF) in supporting postnatal angiogenesis and lymphangiogenesis. Cancer Cell 6, 307–309 (2004).

    CAS  PubMed  Google Scholar 

  28. Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–143 (2002).

    CAS  PubMed  Google Scholar 

  29. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    CAS  PubMed  Google Scholar 

  30. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    CAS  PubMed  Google Scholar 

  31. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    CAS  PubMed  Google Scholar 

  32. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  33. Stacker, S. A. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Med. 7, 186–191 (2001).

    CAS  PubMed  Google Scholar 

  34. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  35. Folkman, J. Seminars in medicine of the beth israel hospital, boston. Clinical applications of research on angiogenesis. N. Engl J. Med. 333, 1757–1763 (1995).

    CAS  PubMed  Google Scholar 

  36. Relf, M. et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969 (1997).

    CAS  PubMed  Google Scholar 

  37. Kandel, J. et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66, 1095–1104 (1991).

    CAS  PubMed  Google Scholar 

  38. Galy, B., Creancier, L., Prado-Lourenco, L., Prats, A. C. & Prats, H. p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 20, 4613–4620 (2001).

    CAS  PubMed  Google Scholar 

  39. Galy, B., Creancier, L., Zanibellato, C., Prats, A. C. & Prats, H. Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism. Oncogene 20, 1669–1677 (2001).

    CAS  PubMed  Google Scholar 

  40. Ueba, T. et al. Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc. Natl Acad. Sci. USA 91, 9009–9013. (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Enholm, B. et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14, 2475–2483 (1997).

    CAS  PubMed  Google Scholar 

  42. Gjerset, R. A. et al. Characterization of a new human glioblastoma cell line that expresses mutant p53 and lacks activation of the PDGF pathway. In Vitro Cell. Dev. Biol. Anim. 31, 207–214 (1995).

    CAS  PubMed  Google Scholar 

  43. Uramoto, H. et al. pRb, Myc and p53 are critically involved in SV40 large T antigen repression of PDGF β-receptor transcription. J. Cell Sci. 117, 3855–3865 (2004).

    CAS  PubMed  Google Scholar 

  44. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    CAS  PubMed  Google Scholar 

  46. Sano, T. & Horiguchi, H. Von Hippel–Lindau disease. Microsc. Res. Tech. 60, 159–164 (2003).

    PubMed  Google Scholar 

  47. Arbiser, J. L. et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl Acad. Sci. USA 94, 861–866 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Su, W. C. et al. Expression of oncogene products HER2/Neu and Ras and fibrosis-related growth factors bFGF, TGF-β, and PDGF in bile from biliary malignancies and inflammatory disorders. Dig. Dis. Sci. 46, 1387–1392 (2001).

    CAS  PubMed  Google Scholar 

  49. Lohela, M., Saaristo, A., Veikkola, T. & Alitalo, K. Lymphangiogenic growth factors, receptors and therapies. Thromb. Haemost. 90, 167–184 (2003).

    CAS  PubMed  Google Scholar 

  50. Petrova, T. V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nature Rev. Cancer 4, 806–813 (2004).

    CAS  Google Scholar 

  52. Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514 (1999).

    CAS  PubMed  Google Scholar 

  53. Cliff, W. J. & Nicoll, P. A. Structure and function of lymphatic vessels of the bat's wing. Q. J. Exp. Physiol. Cogn. Med. Sci. 55, 112–131 (1970).

    CAS  PubMed  Google Scholar 

  54. Nagy, J. A. et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med. 196, 1497–1506 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Beasley, N. J. et al. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res. 62, 1315–1320 (2002).

    CAS  PubMed  Google Scholar 

  56. Cao, Y. Direct role of PDGF-BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle 4, 228–230 (2005).

    CAS  PubMed  Google Scholar 

  57. Dadras, S. S. et al. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am. J. Pathol. 162, 1951–1960 (2003).

    PubMed  PubMed Central  Google Scholar 

  58. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mandriota, S. J. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 20, 672–682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Choi, W. W. et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod. Pathol. 18, 143–152 (2005).

    CAS  PubMed  Google Scholar 

  61. Cursiefen, C. et al. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest. Ophthalmol. Vis. Sci. 45, 2666–2673 (2004).

    PubMed  Google Scholar 

  62. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089–1099 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Salven, P., Mustjoki, S., Alitalo, R., Alitalo, K. & Rafii, S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101, 168–172 (2003).

    CAS  PubMed  Google Scholar 

  65. He, Y. et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res. 64, 3737–3740 (2004).

    CAS  PubMed  Google Scholar 

  66. Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunol. 5, 74–80 (2004).

    CAS  Google Scholar 

  67. Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  69. Dvorak, H. F. Rous-whipple award lecture. How tumors make bad blood vessels and stroma. Am. J. Pathol. 162, 1747–1757 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    CAS  PubMed  Google Scholar 

  71. Cao, R. et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664–670 (2004).

    CAS  PubMed  Google Scholar 

  72. Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247–257 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sawano, A. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97, 785–791 (2001).

    CAS  PubMed  Google Scholar 

  75. Fredriksson, L., Li, H. & Eriksson, U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 15, 197–204 (2004).

    CAS  PubMed  Google Scholar 

  76. Westermark, B. & Heldin, C. H. Platelet-derived growth factor. Structure, function and implications in normal and malignant cell growth. Acta. Oncol. 32, 101–105 (1993).

    CAS  PubMed  Google Scholar 

  77. Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 15, 215–228 (2004).

    CAS  PubMed  Google Scholar 

  78. Hoch, R. V. & Soriano, P. Roles of PDGF in animal development. Development 130, 4769–4784 (2003).

    CAS  PubMed  Google Scholar 

  79. Lindahl, P., Johansson, B. R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    CAS  PubMed  Google Scholar 

  80. Anan, K. et al. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer. Surgery 119, 333–339 (1996).

    CAS  PubMed  Google Scholar 

  81. Travers, M. T. et al. Growth factor expression in normal, benign, and malignant breast tissue. Br. Med. J. (Clin. Res. Ed.) 296, 1621–1624 (1988).

    CAS  Google Scholar 

  82. Lamszus, K., Heese, O. & Westphal, M. Angiogenesis-related growth factors in brain tumors. Cancer Treat. Res. 117, 169–190 (2004).

    CAS  PubMed  Google Scholar 

  83. Ostman, A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev. 15, 275–286 (2004).

    PubMed  Google Scholar 

  84. Roberts, W. G. et al. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res. 65, 957–966 (2005).

    CAS  PubMed  Google Scholar 

  85. Shing, Y. et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296–1299 (1984).

    CAS  PubMed  Google Scholar 

  86. Javerzat, S., Auguste, P. & Bikfalvi, A. The role of fibroblast growth factors in vascular development. Trends Mol. Med. 8, 483–489 (2002).

    CAS  PubMed  Google Scholar 

  87. Cao, Y. H. & Pettersson, R. F. Human acidic fibroblast growth factor overexpressed in insect cells is not secreted into the medium. Growth Factors 3, 1–13 (1990).

    CAS  PubMed  Google Scholar 

  88. Friesel, R. E. & Maciag, T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 9, 919–925 (1995).

    CAS  PubMed  Google Scholar 

  89. Malecki, J., Wesche, J., Skjerpen, C. S., Wiedlocha, A. & Olsnes, S. Translocation of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism. Mol. Biol. Cell 15, 801–814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Christofori, G. & Luef, S. Novel forms of acidic fibroblast growth factor-1 are constitutively exported by b tumor cell lines independent from conventional secretion and apoptosis. Angiogenesis 1, 55–70 (1997).

    CAS  PubMed  Google Scholar 

  91. Nguyen, M. et al. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl Cancer Inst. 86, 356–361 (1994).

    CAS  PubMed  Google Scholar 

  92. Tille, J. C., Nisato, R. & Pepper, M. S. Lymphangiogenesis and tumour metastasis. Novartis Found. Symp. 256, 112–131 (2004).

    CAS  PubMed  Google Scholar 

  93. Rutanen, J. et al. Vascular endothelial growth factor-D expression in human atherosclerotic lesions. Cardiovasc. Res. 59, 971–979 (2003).

    CAS  PubMed  Google Scholar 

  94. Schoppmann, S. F. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161, 947–956 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    CAS  PubMed  Google Scholar 

  96. Karkkainen, M. J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl Acad. Sci. USA 98, 12677–12682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Morisada, T. et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood 105, 4649–4656 (2005).

    CAS  PubMed  Google Scholar 

  98. Mouta, C. & Heroult, M. Inflammatory triggers of lymphangiogenesis. Lymphat. Res. Biol. 1, 201–218 (2003).

    CAS  PubMed  Google Scholar 

  99. Atkins, C. D. Re: Influence of the new AJCC breast cancer staging system on sentinel lymph node positivity and false-negative rates. J. Natl Cancer Inst. 96, 1639 (2004).

    PubMed  Google Scholar 

  100. Delahaye, S. et al. [Routine sentinel node detection in breast cancer. Experience of the Curie Institute]. Bull Cancer 91, 641–647 (2004) (in French).

    PubMed  Google Scholar 

  101. Nakamura, E. S., Koizumi, K., Kobayashi, M. & Saiki, I. Inhibition of lymphangiogenesis-related properties of murine lymphatic endothelial cells and lymph node metastasis of lung cancer by the matrix metalloproteinase inhibitor MMI270. Cancer Sci. 95, 25–31 (2004).

    CAS  PubMed  Google Scholar 

  102. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nature Med. 9, 604–613 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research grants of Y.C.'s laboratory are received from the Swedish Research Council, the Swedish Heart and Lung Foundation, the Swedish Cancer Foundation, the Karolinska Institute fund, the Söderberg Foundation, the EU integrated projects of Angiotargeting, and VascuPlug. Y.C. is supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

FGF2

p53

PDGFB

PROX1

VEGFA

VEGFC

VEGFD

VEGFR3

VHL

FURTHER INFORMATION

Yihai Cao's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y. Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5, 735–743 (2005). https://doi.org/10.1038/nrc1693

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing