Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microtubules as a target for anticancer drugs

Key Points

  • Microtubules are highly dynamic cytoskeletal fibres that are composed of tubulin subunits. They show two types of non-equilibrium dynamics — treadmilling and dynamic instability — both of which are crucial to mitosis and cell division.

  • Dynamic microtubules continue to be one of the most successful cancer chemotherapeutic targets. Many new drugs that target microtubules are in clinical trials and large numbers of microtubule-active compounds are being developed.

  • Among the most successful microtubule-targeted chemotherapeutic drugs are paclitaxel and the Vinca alkaloids, which were previously thought to work through opposite mechanisms. We now recognize that their most potent actions are suppression of microtubule dynamics, rather than increasing or decreasing microtubule-polymer mass.

  • Microtubule-active drugs generally bind to one of three main classes of sites on tubulin, the paclitaxel site, the Vinca domain and the colchicine domain. Drugs that bind to the colchicine domain are undergoing intensive investigation as vascular-targeting agents for cancer therapy.

  • Development of resistance to microtubule-targeted drugs has several possible causes, some of which might involve changes in microtubule dynamics resulting from altered expression of tubulin isotypes, tubulin mutations, and altered expression or binding of microtubule-regulatory proteins.

  • Microtubule-targeted drugs can synergize with one another.

  • Understanding their modes of action might lead to improved dosing regimens and combinations with other microtubule-targeted drugs, as well as combinations with 'molecularly targeted' drugs.

Abstract

Highly dynamic mitotic-spindle microtubules are among the most successful targets for anticancer therapy. Microtubule-targeted drugs, including paclitaxel and Vinca alkaloids, were previously considered to work primarily by increasing or decreasing the cellular microtubule mass. Although these effects might have a role in their chemotherapeutic actions, we now know that at lower concentrations, microtubule-targeted drugs can suppress microtubule dynamics without changing microtubule mass; this action leads to mitotic block and apoptosis. In addition to the expanding array of chemically diverse antimitotic agents, some microtubule-targeted drugs can act as vascular-targeting agents, rapidly depolymerizing microtubules of newly formed vasculature to shut down the blood supply to tumours.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Polymerization of microtubules.
Figure 2: Microtubules in two human osteosarcoma cells in interphase of the cell cycle.
Figure 3: Antimitotic drugs suppress dynamic instability of microtubules.
Figure 4: Polymerization dynamics and the GTP cap.
Figure 5: Human osteosarcoma cells in different stages of the cell cycle with and without addition of antimitotic drugs.
Figure 6: Antimitotic drugs bind to microtubules at diverse sites.

References

  1. 1

    Luduena, R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytology 178, 207–275 (1998). Comprehensive review of tubulin isotypes and post-translational modifications.

    CAS  Google Scholar 

  2. 2

    Verdier-Pinard, P. et al. Direct analysis of tubulin expression in cancer cell lines by electrospray ionization mass spectrometry. Biochemistry 42, 12019–12027 (2003). Describes analysis of tubulin isotypes, mutations and post-translational modifications by liquid chromatography/electrospray-ionization mass spectrometry in paclitaxel-sensitive and -resistant cell lines.

    CAS  PubMed  Google Scholar 

  3. 3

    Ligon, L. A., Shelly, S. S., Tokito, M. & Holzbaur, E. L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell 14, 1405–1417 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Galmarini, C. M. et al. Drug resistance associated with loss of p53 involves extensive alterations in microtubule composition and dynamics. Br. J. Cancer 88, 1793–1799 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Giodini, A. et al. Regulation of microtubule stability and mitotic progression by survivin. Cancer Res. 62, 2462–2467 (2002).

    CAS  PubMed  Google Scholar 

  6. 6

    Cassimeris, L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18–24 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748–20753 (2000).

    CAS  Google Scholar 

  8. 8

    Maney, T., Wagenbach, M. & Wordeman, L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J. Biol. Chem. 276, 34753–34758 (2001).

    CAS  Google Scholar 

  9. 9

    Jordan, M. A. & Wilson, L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 10, 123–130 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Giannakakou, P., Sackett, D. & Fojo, T. Tubulin/microtubules: still a promising target for new chemotherapeutic agents. J. Natl Cancer Inst. 92, 182–183 (2000).

    CAS  PubMed  Google Scholar 

  11. 11

    Gerzon, K. in Anticancer Agents Based on Natural Product Models (eds Cassady, J. M. & Douros, J. D.) 271–317 (Academic, New York, 1980).

    Google Scholar 

  12. 12

    Wordeman, L. & Mitchison, T. J. in Microtubules (eds Hyams, J. S. & Lloyd, C. W.) 287–302 (Wiley–Liss, New York, 1994).

    Google Scholar 

  13. 13

    Wilson, L. & Jordan, M. A. in Microtubules (eds Hyams, J. S. & Lloyd, C. W.) 59–84 (Wiley–Liss, New York, 1994).

    Google Scholar 

  14. 14

    McIntosh, J. R. in Microtubules (eds Hyams, J. S. & Lloyd, C. W.) 413–434 (Wiley–Liss, New York, 1994).

    Google Scholar 

  15. 15

    Waterman-Storer, C. & Salmon, E. D. Microtubule dynamics: treadmilling comes around again. Curr. Biol. 7, 369–372 (1997).

    Google Scholar 

  16. 16

    Mitchison, T. J. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Margolis, R. L. & Wilson, L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13, 1–8 (1978).

    CAS  PubMed  Google Scholar 

  18. 18

    Margolis, R. L. & Wilson, L. Microtubule treadmilling: what goes around comes around. Bioessays 20, 830–836 (1998).

    CAS  PubMed  Google Scholar 

  19. 19

    Rodionov, V. I. & Borisy, G. G. Microtubule treadmilling in vivo. Science 275, 215–218 (1997).

    CAS  PubMed  Google Scholar 

  20. 20

    Shaw, S. L., Kamyar, R. & Ehrhardt, D. W. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300, 1715–1718 (2003).

    CAS  PubMed  Google Scholar 

  21. 21

    Panda, D., Miller, H. P. & Wilson, L. Rapid treadmilling of MAP-free brain microtubules in vitro and its suppression by tau. Proc. Natl Acad. Sci. USA 96, 12459–12464 (1999).

    CAS  PubMed  Google Scholar 

  22. 22

    Chen, W. & Zhang, D. Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nature Cell Biol. 6, 227–231 (2004). Demonstration of importance of treadmilling in anaphase-chromosome poleward movement and the independence of treadmilling from the spindle matrix.

    PubMed  Google Scholar 

  23. 23

    Wilson, L., Panda, D. & Jordan, M. A. Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct. Funct. 24, 329–335 (1999).

    CAS  PubMed  Google Scholar 

  24. 24

    Nogales, E. Structural insights into microtubule function. Annu. Rev. Biophys. Biomol. Struct. 30, 397–420 (2001).

    CAS  PubMed  Google Scholar 

  25. 25

    Wilson, L. & Jordan, M. A. Microtubule dynamics: taking aim at a moving target. Chem. Biol. 2, 569–573 (1995).

    CAS  PubMed  Google Scholar 

  26. 26

    Lodish, H. et al. Molecular Cell Biology (W. H. Freeman, New York, 1999).

    Google Scholar 

  27. 27

    Panda, D., Miller, H. & Wilson, L. Determination of the size and chemical nature of the stabilizing cap at microtubule ends using modulators of polymerization dynamics. Biochemistry 41, 1609–1617 (2002).

    CAS  PubMed  Google Scholar 

  28. 28

    Caplow, M. & Fee, L. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules. Biochemistry 42, 2122–2126 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Panda, D., Miller, H. P. & Wilson, L. Rapid treadmilling of brain microtubules free of microtubule-associated proteins in vitro and its suppression by tau. Proc. Natl Acad. Sci. USA 96, 12459–12464 (1999).

    CAS  PubMed  Google Scholar 

  30. 30

    Wittmann, T., Bokoch, G. & Waterman-Storer, C. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845–851 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Alli, E., Bash-Babula, J., Yang, J. -M. & Hait, W. N. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res. 62, 6864–6869 (2002).

    CAS  PubMed  Google Scholar 

  32. 32

    McNally, F. Microtubule dynamics: new surprises from an old MAP. Curr. Biol. 13, 597–599 (2003).

    Google Scholar 

  33. 33

    Ohi, R., Coughlin, M. L., Lane, W. S. & Mitchison, T. J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell 5, 309–321 (2003).

    CAS  PubMed  Google Scholar 

  34. 34

    Carvalho, P., Tirnauer, J. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 13, 229–237 (2003).

    CAS  PubMed  Google Scholar 

  35. 35

    Hergovich, A., Lisztwan, J., Barry, R., Ballschmieter, P. & Krek, W. Regulation of microtubule stability by the von Hippel–Lindau tumour suppressor protein pVHL. Nature Cell Biol. 5, 64–70 (2003).

    CAS  PubMed  Google Scholar 

  36. 36

    Komarova, Y., Akhmanova, A., Kojima, S., Galjart, N. & Borisy, G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589–599 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Mitchison, T. J. Microtubule dynamics and kinetochore function in mitosis. Annu. Rev. Cell Biol. 4, 527–549 (1988).

    CAS  PubMed  Google Scholar 

  38. 38

    Saxton, W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).

    CAS  PubMed  Google Scholar 

  39. 39

    Rusan, N. M., Fagerstrom, C. J., Yvon, A. -M. C. & Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein–α tubulin. Mol. Biol. Cell 12, 971–980 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Pepperkok, R., Bre, M. H., Davoust, J. & Kreis, T. E. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts. J. Cell Biol. 111, 3003–3012 (1990).

    CAS  PubMed  Google Scholar 

  41. 41

    Zhai, Y., Kronebusch, P. J., Simon, P. M. & Borisy, G. G. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol. 135, 201–214 (1996).

    CAS  PubMed  Google Scholar 

  42. 42

    Hayden, J. J., Bowser, S. S. & Rieder, C. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt cells. J. Cell Biol. 111, 1039–1045 (1990). Classic demonstration of the role of microtubule dynamic instability in the attachment of chromosomes to the mitotic spindle.

    CAS  PubMed  Google Scholar 

  43. 43

    Jordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 56, 816–825 (1996). Demonstration that mitotic block by low concentrations of paclitaxel leads to apoptosis.

    CAS  Google Scholar 

  44. 44

    Rieder, C., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994).

    CAS  Article  Google Scholar 

  45. 45

    Shelby, R. D., Hahn, K. M. & Sullivan, K. F. Dynamic elastic behavior of α-satellite DNA domains visualized in situ in living human cells. J. Cell Biol. 135, 545–557 (1996).

    CAS  Google Scholar 

  46. 46

    Mitchison, T. J. Poleward microtubule flux in the mitotic spindle; evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652 (1989).

    CAS  PubMed  Google Scholar 

  47. 47

    Wilson, P. J. & Forer, A. Effects of nanomolar taxol on crane-fly spermatocyte spindles indicate that acetylation of kinetochore microtubules can be used as a marker of poleward tubulin flux. Cell Motil. Cytoskeleton 37, 20–32 (1997).

    CAS  PubMed  Google Scholar 

  48. 48

    Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).

    CAS  Google Scholar 

  49. 49

    Nicklas, R. B., Ward, S. C. & Gorbsky, G. J. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J. Cell Biol. 130, 929–939 (1995).

    CAS  PubMed  Google Scholar 

  50. 50

    Gorbsky, G. J. Cell cycle checkpoints: arresting progress in mitosis. BioEssays 19, 193–197 (1997).

    CAS  Google Scholar 

  51. 51

    Zhou, J. et al. Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation. Mol. Pharmacol. 63, 799–807 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Hamel, E. & Covell, D. G. Antimitotic peptides and depsipeptides. Curr. Med. Chem. Anti-Canc. Agents 2, 19–53 (2002).

    CAS  Google Scholar 

  53. 53

    Hoffman, J. C. & Vaughn, K. C. Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 179, 16–25 (1994).

    CAS  Google Scholar 

  54. 54

    Lacey, E. & Gill, J. H. Biochemistry of benzimidazole resistance. Acta Trop. 56, 245–262 (1994).

    CAS  PubMed  Google Scholar 

  55. 55

    Lobert, S., Ingram, J. & Correia, J. Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly. Cancer Res. 59, 4816–4822 (1999).

    CAS  PubMed  Google Scholar 

  56. 56

    Cann, J. R. & Hinman, N. D. Interaction of chlorpromazine with brain microtubule subunit protein. Molec. Pharmacol. 11, 256–267 (1975).

    CAS  Google Scholar 

  57. 57

    Boder, G. B., Paul, D. C. & Williams, D. C. Chlorpromazine inhibits mitosis of mammalian cells. Eur. J. Cell Biol. 31, 349–353 (1983).

    CAS  PubMed  Google Scholar 

  58. 58

    Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anti-Canc. Agents 2, 1–17 (2002).

    CAS  Google Scholar 

  59. 59

    Jimenez-Barbero, J., Amat-Guerri, F. & Snyder, J. P. The solid state, solution and tubulin-bound conformations of agents that promote microtubule stabilization. Curr. Med. Chem. Anti-Canc. Agents 2, 91–122 (2002).

    CAS  Google Scholar 

  60. 60

    Jordan, M. A., Toso, R. J., Thrower, D. & Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl Acad. Sci. USA 90, 9552–9556 (1993).

    CAS  PubMed  Google Scholar 

  61. 61

    Chen, J. -G. & Horwitz, S. B. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res. 62, 1935–1938 (2002).

    CAS  PubMed  Google Scholar 

  62. 62

    Yvon, A. -M., Wadsworth, P. & Jordan, M. A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 10, 947–949 (1999). First demonstration that suppression of microtubule dynamics in living cells by low concentrations of paclitaxel correlates with mitotic block.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Jordan, M. A. & Wilson, L. in Methods in Cell Biology, in Mitosis and Meiosis Vol. 61 (ed. Rieder, C. L.) 267–295 (Academic, New York, 1998).

    Google Scholar 

  64. 64

    Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Johnson, I. S., Wright, H. F. & Svoboda, G. H. Experimental basis for clinical evaluation of anti-tumor principles derived from Vinca rosea Linn. J. Lab. Clin. Med. 54, 830–837 (1959).

  67. 67

    Noble, R. L., Beer, C. T. & Cutts, J. H. Further biological activities of vincaleukoblastine: an alkaloid isolated from Vinca rosea (L.). Biochem. Pharmacol. 1, 347–348 (1958).

    Google Scholar 

  68. 68

    Gidding, C. E., Kellie, S. J., Kamps, W. A. & de Graaf, S. S. Vincristine revisited. Crit. Rev. Oncol. Hematol. 29, 267–287 (1999).

    CAS  PubMed  Google Scholar 

  69. 69

    Quasthoff, S. & Hartung, H. P. Chemotherapy-induced peripheral neuropathy. J. Neurol. 249, 9–17 (2002).

    CAS  PubMed  Google Scholar 

  70. 70

    Sahenk, Z., Barohn, R., New, P. & Mendell, J. R. Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings. Arch. Neurol. 51, 726–729 (1994).

    CAS  PubMed  Google Scholar 

  71. 71

    Jordan, M. A., Thrower, D. & Wilson, L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res. 51, 2212–2222 (1991). First demonstration that antimitotic mechanism of Vinca alkaloids does not require microtubule depolymerization.

    CAS  PubMed  Google Scholar 

  72. 72

    Bai, R. B., Pettit, G. R. & Hamel, E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and Vinca alkaloid sites. J. Biol. Chem. 265, 17141–17149 (1990).

    CAS  PubMed  Google Scholar 

  73. 73

    Wilson, L., Jordan, M. A., Morse, A. & Margolis, R. L. Interaction of vinblastine with steady-state microtubules in vitro. J. Mol. Biol. 159, 125–149 (1982).

    CAS  PubMed  Google Scholar 

  74. 74

    Jordan, M. A. & Wilson, L. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations. Biochemistry 29, 2730–2739 (1990).

    CAS  PubMed  Google Scholar 

  75. 75

    Na, G. C. & Timasheff, S. N. Thermodynamic linkage between tubulin self-association and the binding of vinblastine. Biochemistry 19, 1347–1354 (1980).

    CAS  PubMed  Google Scholar 

  76. 76

    Na, G. C. & Timasheff, S. N. Stoichiometry of the vinblastine-induced self-association of calf brain tubulin. Biochemistry 19, 1347–1354 (1980).

    CAS  PubMed  Google Scholar 

  77. 77

    Lobert, S. & Correia, J. in Methods in Enzymology Vol. 323, (ed. Johnson, M.) 77–103 (Academic Press, 2000).

    Google Scholar 

  78. 78

    Jordan, M. A., Margolis, R. L., Himes, R. H. & Wilson, L. Identification of a distinct class of vinblastine binding sites on microtubules. J. Mol. Biol. 187, 61–73 (1986).

    CAS  PubMed  Google Scholar 

  79. 79

    Singer, W. D., Jordan, M. A., Wilson, L. & Himes, R. H. Binding of vinblastine to stabilized microtubules. Mol. Pharmacol. 36, 366–370 (1989).

    CAS  PubMed  Google Scholar 

  80. 80

    Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    CAS  PubMed  Google Scholar 

  81. 81

    Schiff, P. B., Fant, J. & Horwitz, S. B. Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–667 (1979). Classic demonstration that paclitaxel enhances microtubule polymerization and stabilizes microtubules.

    CAS  PubMed  Google Scholar 

  82. 82

    Horwitz, S. B. How to make taxol from scratch. Nature 367, 593–594 (1994).

    CAS  PubMed  Google Scholar 

  83. 83

    Von Hoff, D. D. The taxoids: same roots, different drugs. Semin. Oncol. 24 (4 Suppl. 13), S13-3–S13-10 (1997).

    Google Scholar 

  84. 84

    Markman, M. Managing taxane toxicities. Support Care Cancer 11, 144–147 (2003).

    PubMed  Google Scholar 

  85. 85

    Nogales, E., Wolf, S. G., Khan, I. A., Luduena, R. F. & Downing, K. A. Structure of tubulin at 6.5Å and location of the taxol-binding site. Nature 375, 424–427 (1995). First high-resolution determination of the structure of polymerized tubulin and the paclitaxel-binding site.

    CAS  PubMed  Google Scholar 

  86. 86

    Derry, W. B., Wilson, L. & Jordan, M. A. Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34, 2203–2211 (1995). Mechanistic analysis of suppression of microtubule dynamics by paclitaxel.

    CAS  PubMed  Google Scholar 

  87. 87

    Kelling, J., Sullivan, K., Wilson, L. & Jordan, M. A. Suppression of centromere dynamics by taxol in living osteosarcoma cells. Cancer Res. 63, 2794–2801 (2003).

    CAS  PubMed  Google Scholar 

  88. 88

    Pryor, D. E. et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 41, 9109–9115 (2002).

    CAS  PubMed  Google Scholar 

  89. 89

    Hastie, S. B. Interactions of colchicine with tubulin. Pharmacol. Ther. 512, 377–401 (1991).

    Google Scholar 

  90. 90

    Skoufias, D. & Wilson, L. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin–colchicine complexes. Biochemistry 31, 738–746 (1992).

    CAS  PubMed  Google Scholar 

  91. 91

    Tozer, G. M., Kanthou, C., Parkins, C. S. & Hill, S. A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol. 83, 21–38 (2002). Review of mechanism of action of combretastatins and their therapeutic potential.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Kanthou, C. & Tozer, G. M. The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood 99, 2060–2069 (2002).

    CAS  PubMed  Google Scholar 

  93. 93

    Tozer, G. M. et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res. 61, 6413–6422 (2001).

    CAS  PubMed  Google Scholar 

  94. 94

    Prise, V. E., Honess, D. J., Stratford, M. R., Wilson, J. & Tozer, G. M. The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses. Int. J. Oncol. 21, 717–726 (2002).

    CAS  PubMed  Google Scholar 

  95. 95

    Davis, P. D. et al. ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res. 62, 7247–7253 (2002).

    CAS  PubMed  Google Scholar 

  96. 96

    Dumontet, C. & Sikic, B. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J. Clin. Oncol. 17, 1061–1070 (1999).

    CAS  PubMed  Google Scholar 

  97. 97

    Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485 (2003).

    CAS  Google Scholar 

  98. 98

    Safa, A. R. Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators. Curr. Med. Chem. Anti-Canc. Agents 4, 1–17 (2004).

    CAS  Google Scholar 

  99. 99

    Thomas, H. & Coley, H. M. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10, 159–165 (2003).

    PubMed  Google Scholar 

  100. 100

    Geney, R., Ungureanu, M., Li, D. & Ojima, I. Overcoming multidrug resistance in taxane chemotherapy. Clin. Chem. Lab. Med. 40, 918–925 (2002).

    CAS  PubMed  Google Scholar 

  101. 101

    Orr, G. A., Verdier-Pinard, P., McDaid, H. & Horwitz, S. B. Mechanisms of taxol resistance related to microtubules. Oncogene 22, 7280–7295 (2003). Comprehensive review of microtubule-related mechanisms of paclitaxel resistance.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Kavallaris, M. et al. Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res. 61, 5803–5809 (2001).

    CAS  PubMed  Google Scholar 

  103. 103

    Minotti, A. M., Barlow, S. B. & Cabral, F. Resistance to antimitotic drugs in Chinese hamster ovary cells correlated with changes in the level of polymerized tubulin. J. Biol. Chem. 266, 3987–3994 (1991).

    CAS  PubMed  Google Scholar 

  104. 104

    James, S. W., Silflow, C. D., Stroom, P. & Lefebvre, P. A. A mutation in the α1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. J. Cell Sci. 106, 209–218 (1993).

    CAS  PubMed  Google Scholar 

  105. 105

    Lee, W. -P. Purification and characterization of tubulin from parental and vincristine-resistant HOB1 lymphoma cells. Arch. Biochem. Biophys. 319, 498–503 (1995).

    CAS  PubMed  Google Scholar 

  106. 106

    Ohta, S. et al. Characterization of a taxol-resistant human small-cell lung cancer cell line. Jpn. J. Cancer Res. 85, 290–297 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Laing, N. M. et al. Amplification of the ATP-binding cassette 2 transporter gene is functionally linked with enhanced efflux of estramustine in ovarian carcinoma cells. Cancer Res. 58, 1332–1337 (1998).

    CAS  PubMed  Google Scholar 

  108. 108

    Burkhart, C. A., Kavallaris, M. & Band Horwitz, S. The role of β-tubulin isotypes in resistance to antimitotic drugs. Biochim. Biophys. Acta. 1471, O1–O9 (2001).

    CAS  PubMed  Google Scholar 

  109. 109

    Dumontet, C. et al. Resistance to microtubule–targeted cytotoxins in a K562 leukemia cell variant is associated with altered tubulin expression. Elec. J. Oncol. 2, 33–44 (1999).

    Google Scholar 

  110. 110

    Giannakakou, P. et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc. Natl Acad. Sci. USA 97, 2904–2909 (2000).

    CAS  PubMed  Google Scholar 

  111. 111

    Goncalves, A. et al. Resistance to taxol in lung cancer cells associated with increased microtubule dynamics. Proc. Natl Acad. Sci. USA 98, 11737–11741 (2001). First demonstration of sensitivity of mitotic progression to precise regulation of microtubule dynamics and of the association of increased microtubule dynamics with paclitaxel resistance.

    CAS  PubMed  Google Scholar 

  112. 112

    Haber, M. et al. Altered expression of Mβ2, the class II β-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J. Biol. Chem. 270, 31269–31275 (1995).

    CAS  PubMed  Google Scholar 

  113. 113

    Jaffrezou, J. -P. et al. Novel mechanism of resistance to paclitaxel in human K562 leukemia cells by combined selection with PSC833. Oncology Res. 7, 517–527 (1995).

    CAS  Google Scholar 

  114. 114

    Kavallaris, M. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes. J. Clin. Invest. 100, 1–12 (1997).

    Google Scholar 

  115. 115

    Poruchynsky, M. S. et al. Accompanying protein alterations in malignant cells with a microtubule- polymerizing drug-resistance phenotype and a primary resistance mechanism. Biochem. Pharmacol. 62, 1469–1480 (2001).

    CAS  PubMed  Google Scholar 

  116. 116

    Ranganathan, S. et al. Increase of βIII- and βIVa-tubulin isotypes in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res. 56, 2584–2589 (1996).

    CAS  PubMed  Google Scholar 

  117. 117

    Verdier-Pinard, P. et al. Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42, 5349–5357 (2003).

    CAS  PubMed  Google Scholar 

  118. 118

    Kavallaris, M., Burkhardt, C. A. & Horwitz, S. B. Antisense oligonucleotides to class III β-tubulin sensitize drug-resistant cells to Taxol. Br. J. Cancer 80, 1020–1025 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Martello, L. A. et al. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin. Cancer Res. 6, 1978–1987 (2000).

    CAS  PubMed  Google Scholar 

  120. 120

    Martello, L. A. et al. Elevated levels of microtubule destabilizing factors in a taxol-resistant/dependent A549 cell line with an α-tubulin mutation. Cancer Res. 63, 1207–1213 (2003).

    CAS  PubMed  Google Scholar 

  121. 121

    Wendell, K. L., Wilson, L. & Jordan, M. A. Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes. J. Cell Sci. 104, 261–274 (1993).

    CAS  PubMed  Google Scholar 

  122. 122

    Panda, D., Miller, H., Islam, K. & Wilson, L. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action. Proc. Natl Acad. Sci. USA 94, 10560–10564 (1997).

    CAS  PubMed  Google Scholar 

  123. 123

    Seidman, A., Scher, H. I., Petrylak, D., Derrshaw, D. D. & Curley, T. Estramustine and vinblastine: use of prostate specific antigen as a clinical trial end point for hormone refractory prostatic cancer. J. Urol. 147, 931–934 (1992).

    CAS  PubMed  Google Scholar 

  124. 124

    Hudes, G. R. et al. Phase II study of estramustine and vinblastine, two microtubule inhibitors, in hormone-refractory prostate cancer. J. Clin. Oncol. 10, 1754–1761 (1992).

    CAS  PubMed  Google Scholar 

  125. 125

    Hudes, G. R. et al. Paclitaxel plus estramustine in metastatic hormone-refractory prostate cancer. Semin. Oncol. 22, 41–45 (1995).

    CAS  PubMed  Google Scholar 

  126. 126

    Knick, V. C., Eberwein, D. & Miller, C. Vinorelbine tartrate and paclitaxel combinations: enhanced activity against in vivo P388 murine leukemia cells. J. Natl Cancer Inst. 87, 1072–1077 (1995).

    CAS  PubMed  Google Scholar 

  127. 127

    Photiou, A., Shah, P., Leong, L., Moss, J. & Retsas, S. In vitro synergy of paclitaxel (Taxol) and vinorelbine (navelbine) against human melanoma cell lines. Eur. J. Cancer 33, 463–470 (1997).

    CAS  PubMed  Google Scholar 

  128. 128

    Dieras, V. et al. Docetaxel in combination with doxorubicin or vinorelbine. Eur. J. Cancer 33 (Suppl 7), 20–22 (1997).

    Google Scholar 

  129. 129

    Garcia, P., Braguer, D., Carles, G. & Briand, C. Simultaneous combination of microtubule depolymerizing and stabilizing agents acts at low doses. Anticancer Drugs 6, 533–544 (1995).

    CAS  PubMed  Google Scholar 

  130. 130

    Giannakakou, P., Villalba, L., Li, H., Poruchynsky, M. & Fojo, T. Combinations of paclitaxel and vinblastine and their effects on tubulin polymerization and cellular cytotoxicity: characterization of a synergistic schedule. Int. J. Cancer 75, 57–63 (1998).

    CAS  PubMed  Google Scholar 

  131. 131

    Duflos, A., Kruczynski, A. & Barret, J. -M. Novel aspects of natural and modified Vinca alkaloids. Curr. Med. Chem. Anti-Canc. Agents 2, 55–70 (2002).

    CAS  Google Scholar 

  132. 132

    Plosker, G. L. & Figgitt, D. Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs 63, 803–843 (2003).

    CAS  PubMed  Google Scholar 

  133. 133

    Sandler, A. B. Chemotherapy for small cell lung cancer. Semin. Oncol. 30, 9–25 (2003).

    CAS  PubMed  Google Scholar 

  134. 134

    Armitage, J. O. Overview of rational and individualized therapeutic strategies for non-Hodgkin's lymphomas. Clin. Lymphoma 3, S5–S11 (2002).

    PubMed  Google Scholar 

  135. 135

    Jassem, J. et al. Oral vinorelbine in combination with cisplatin: a novel active regimen in advanced non-small-cell lung cancer. Ann. Oncol. 14, 1634–1639 (2003).

    CAS  PubMed  Google Scholar 

  136. 136

    Rossi, A. et al. Single agent vinorelbine as first-line chemotherapy in elderly patients with advanced breast cancer. Anticancer Res. 23, 1657–1664 (2003).

    CAS  PubMed  Google Scholar 

  137. 137

    Seidman, A. D. Monotherapy options in the management of metastatic breast cancer. Semin. Oncol. 30, 6–10 (2003).

    CAS  PubMed  Google Scholar 

  138. 138

    Okouneva, T., Hill, B. T., Wilson, L. & Jordan, M. A. The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol. Cancer Ther. 2, 427–436 (2003).

    CAS  PubMed  Google Scholar 

  139. 139

    Panda, D. et al. Interaction of the antitumor compound cryptophycin-52 with tubulin. Biochemistry 39, 14121–14127 (2000).

    CAS  PubMed  Google Scholar 

  140. 140

    Kerksiek, K., Mejillano, M. R., Schwartz, R. E., Georg, G. I. & Himes, R. H. Interaction of cryptophycin 1 with tubulin and microtubules. FEBS Lett. 377, 59–61 (1995).

    CAS  PubMed  Google Scholar 

  141. 141

    Bai, R. B. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the Vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 266, 15882–15889 (1991).

    CAS  PubMed  Google Scholar 

  142. 142

    Luduena, R. F., Roach, M. C., Prasad, V. & Pettit, G. R. Interaction of halichondrin B and homohalichondrin B with bovine brain tubulin. Biochem. Pharmacol. 45, 421–427 (1993).

    CAS  PubMed  Google Scholar 

  143. 143

    Towle, M. J. et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogs of halichondrin B. Cancer Res. 61, 1013–1021 (2001).

    CAS  PubMed  Google Scholar 

  144. 144

    Hamel, E. Natural products which interact with tubulin in the Vinca domain: maytansine, rhizoxin, phomopsin A, Dolastatins 10 and 15 and halichondrin B. Pharmacol. Ther. 55, 31–51 (1992).

    CAS  PubMed  Google Scholar 

  145. 145

    Bai, R., Durso, N. A., Sackett, D. L. & Hamel, E. Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry 38, 14302–14310 (1999).

    CAS  PubMed  Google Scholar 

  146. 146

    Loganzo, F. et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res. 63, 1838–1845 (2003).

    CAS  PubMed  Google Scholar 

  147. 147

    Hamel, E. et al. Antitumor 2,3-dihydro-2-(aryl)-4(1H)-quinazolinone derivatives. Interactions with tubulin. Biochem. Pharmacol. 51, 53–59 (1996).

    CAS  PubMed  Google Scholar 

  148. 148

    Mabjeesh, N. J. et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3, 363–375 (2003).

    CAS  PubMed  Google Scholar 

  149. 149

    Lakhani, N. J., Sarkar, M. A., Venitz, J. & Figg, W. D. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy 23, 165–172 (2003).

    CAS  PubMed  Google Scholar 

  150. 150

    Yoshimatsu, K., Yamaguchi, A., Yoshino, H., Koyanagi, N. & Kitoh, K. Mechanism of action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin. Cancer Res. 57, 3208–3213 (1997).

    CAS  PubMed  Google Scholar 

  151. 151

    Manfredi, J. J., Parness, J. & Horwitz, S. B. Taxol binds to cell microtubules. J. Cell Biol. 94, 688–696 (1982).

    CAS  PubMed  Google Scholar 

  152. 152

    Parness, J. & Horwitz, S. B. Taxol binds to polymerized tubulin in vitro. J. Cell Biol. 91, 479–487 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Diaz, J. F. & Andreu, J. M. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. Biochemistry 32, 2747–2755 (1993).

    CAS  PubMed  Google Scholar 

  154. 154

    Belani, C. P., Langer, C. TAX 326 Study Group. First-line chemotherapy for NSCLC: an overview of relevant trials. Lung Cancer 38 (Suppl. 4), 13–19 (2002).

    PubMed  Google Scholar 

  155. 155

    Fossella, F. V., Lynch, T. & Shepherd, F. A. Second line chemotherapy for NSCLC: establishing a gold standard. Lung Cancer 38, 5–12 (2002).

    PubMed  Google Scholar 

  156. 156

    Bollag, D. M. et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333 (1995).

    CAS  PubMed  Google Scholar 

  157. 157

    Wartmann, M. & Altmann, K. H. The biology and medicinal chemistry of epothilones. Curr. Med. Chem. Anti-Canc. Agents 2, 123–148 (2002).

    CAS  Google Scholar 

  158. 158

    Lee, F. Y. et al. BMS-247550: a novel epothilone analog with a mode of action similar to apclitaxel but possessing superior sntiumor efficacy. Clin. Cancer Res. 7, 1429–1437 (2001).

    CAS  PubMed  Google Scholar 

  159. 159

    Kamath, K. & Jordan, M. A. Suppression of microtubule dynamics by epothilone B in living MCF7 cells. Cancer Res. 63, 6026–6031 (2003).

    CAS  PubMed  Google Scholar 

  160. 160

    ter Haar, E. et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35, 243–250 (1996).

    CAS  PubMed  Google Scholar 

  161. 161

    Honore, S. et al. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Mol. Cancer Ther. 2, 1303–1311 (2003).

    CAS  PubMed  Google Scholar 

  162. 162

    Hung, D. T., Chen, J. & Schreiber, S. L. (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest. Chem. Biol. 3, 287–293 (1996).

    CAS  PubMed  Google Scholar 

  163. 163

    Kavallaris, M., Verrills, N. M. & Hill, B. T. Anticancer therapy with novel tubulin-interacting drugs. Drug Resist. Update 4, 392–401 (2001).

    CAS  Google Scholar 

  164. 164

    Kowalski, R. J. et al. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol. Pharmacol. 52, 613–622 (1997).

    CAS  PubMed  Google Scholar 

  165. 165

    Smaletz, O. et al. Pilot study of epothilone B analog (BMS–247550) and estramustine phosphate in patients with progressive metastatic prostate cancer following castration. Ann. Oncol. 14, 1518–1524 (2003).

    CAS  PubMed  Google Scholar 

  166. 166

    Kelly, W. et al. Dose escalation study of intravenous estramustine phosphate in combination with Paclitaxel and Carboplatin in patients with advanced prostate cancer. Clin. Cancer Res. 9, 2098–2107 (2003).

    CAS  PubMed  Google Scholar 

  167. 167

    Hudes, G. et al. Phase I clinical and pharmacologic trial of intravenous estramustine phosphate. J. Clin. Oncol. 20, 1115–1127 (2002).

    CAS  PubMed  Google Scholar 

  168. 168

    Dahllof, B., Billstron, A., Cabral, F. & Hartley-Asp, B. Estramustine depolymerizes microtubules by binding to tubulin. Cancer Res. 53, 4573–4581 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Kamath for critical reading of the manuscript. Supported by grants from the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Jordan.

Ethics declarations

Competing interests

The authors receive reasearch money or materials from Eli Lilly company, Pierre Fabre Centre de Recherche, Aventis, Novartis and Eisai Research Institute.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colon cancer

Kaposi's sarcoma

kidney cancer

non-small-cell lung cancer

ovarian cancer

LocusLink

dynactin 1

EB1

FHIT

MAP4

MCAK

MDR1

RAC1

stathmin

survivin

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jordan, M., Wilson, L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 4, 253–265 (2004). https://doi.org/10.1038/nrc1317

Download citation

Further reading

Search

Quick links