Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transposable elements in cancer

Key Points

  • Much of the human genome is repetitive sequence derived from transposable elements. These include copy-and-paste retrotransposons and cut-and-paste DNA transposons. Only retrotransposons are active as undomesticated mobile DNAs in humans.

  • Ongoing retrotransposition in humans is attributed to long interspersed element-1 (LINE-1; also known as L1). Its activity creates genomic structural variants in human populations and alterations in cancer genomes. Endogenous retroviruses persist as promoter and protein-coding sequences.

  • LINE-1 encodes open reading frame 1p (ORF1p) and ORF2p proteins. ORF1p is an RNA binding protein widely expressed in human malignancies. ORF2p encodes endonuclease and reverse transcriptase activities essential for retrotransposition.

  • LINE-1 activity generates new copies of itself, and also other sequences, including Alu and short interspersed element (SINE)–variable number tandem repeat (VNTR)–Alu (SVA) retrotransposons, pseudogene copies of messenger transcripts and U6 ribosomal RNAs (rRNAs).

  • In cancer, source LINE-1 elements escape genomic DNA methylation and transcriptional repression to contribute new LINE-1 insertions. Different source elements may be active over different phases of the evolution of a cancer.

  • Somatically acquired LINE-1 insertions can cause driver mutations, particularly in gastrointestinal tract tumours, which support high levels of retrotransposition. Distinguishing contributing mutations from inert passenger mutations is an important challenge for the field.


Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated — both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Types of mobile DNA in the human genome.
Figure 2: Mobilization of the LINE1 retrotransposon.
Figure 3: LINE-1 insertions accrue in cancer cell clones.
Figure 4: Functional impacts of transposable elements.


  1. 1

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Jurka, J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418–420 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Boissinot, S., Chevret, P. & Furano, A. V. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 17, 915–928 (2000).

    CAS  PubMed  Google Scholar 

  4. 4

    Huang, C. R., Burns, K. H. & Boeke, J. D. Active transposition in genomes. Annu. Rev. Genet. 46, 651–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Kazazian, H. H. Jr. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    CAS  PubMed  Google Scholar 

  6. 6

    Hancks, D. C. & Kazazian, H. H. Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    CAS  PubMed  Google Scholar 

  8. 8

    Ostertag, E. M., Prak, E. T., DeBerardinis, R. J., Moran, J. V. & Kazazian, H. H. Jr. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 28, 1418–1423 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Kopera, H. C. et al. LINE-1 cultured cell retrotransposition assay. Methods Mol. Biol. 1400, 139–156 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Ostertag, E. M. et al. A mouse model of human L1 retrotransposition. Nat. Genet. 32, 655–660 (2002).

    CAS  PubMed  Google Scholar 

  11. 11

    An, W. et al. Active retrotransposition by a synthetic L1 element in mice. Proc. Natl Acad. Sci. USA 103, 18662–18667 (2006).

    CAS  PubMed  Google Scholar 

  12. 12

    Batzer, M. A. & Deininger, P. L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379 (2002).

    CAS  PubMed  Google Scholar 

  13. 13

    Xing, J. et al. Mobile elements create structural variation: analysis of a complete human genome. Genome Res. 19, 1516–1526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Ewing, A. D. & Kazazian, H. H. Jr. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20, 1262–1270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Ewing, A. D. & Kazazian, H. H. Jr. Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. Genome Res. 21, 985–990 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Hormozdiari, F. et al. Alu repeat discovery and characterization within human genomes. Genome Res. 21, 840–849 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Stewart, C. et al. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet. 7, e1002236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Richardson, S. R. et al. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. 3, MDNA3-0061–2014 (2015).

    Google Scholar 

  20. 20

    Boeke, J. D., Garfinkel, D. J., Styles, C. A. & Fink, G. R. Ty elements transpose through an RNA intermediate. Cell 40, 491–500 (1985).

    CAS  PubMed  Google Scholar 

  21. 21

    Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48 (2003).

    CAS  PubMed  Google Scholar 

  22. 22

    Hancks, D. C., Goodier, J. L., Mandal, P. K., Cheung, L. E. & Kazazian, H. H. Jr. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum. Mol. Genet. 20, 3386–3400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Raiz, J. et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res. 40, 1666–1683 (2012).

    CAS  PubMed  Google Scholar 

  24. 24

    Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363–367 (2000).

    CAS  PubMed  Google Scholar 

  25. 25

    Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Buzdin, A. et al. A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3′ terminus of L1. Genomics 80, 402–406 (2002).

    CAS  PubMed  Google Scholar 

  27. 27

    Gilbert, N., Lutz, S., Morrish, T. A. & Moran, J. V. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25, 7780–7795 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Garcia-Perez, J. L., Doucet, A. J., Bucheton, A., Moran, J. V. & Gilbert, N. Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res. 17, 602–611 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Doucet, A. J., Droc, G., Siol, O., Audoux, J. & Gilbert, N. U6 snRNA pseudogenes: markers of retrotransposition dynamics in mammals. Mol. Biol. Evol. 32, 1815–1832 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Schueler, M. G. & Sullivan, B. A. Structural and functional dynamics of human centromeric chromatin. Annu. Rev. Genom. Hum. Genet. 7, 301–313 (2006).

    CAS  Google Scholar 

  31. 31

    Mefford, H. C. & Trask, B. J. The complex structure and dynamic evolution of human subtelomeres. Nat. Rev. Genet. 3, 91–102 (2002).

    CAS  PubMed  Google Scholar 

  32. 32

    de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    CAS  Google Scholar 

  34. 34

    Giordano, J. et al. Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput. Biol. 3, e137 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Boissinot, S., Entezam, A., Young, L., Munson, P. J. & Furano, A. V. The insertional history of an active family of L1 retrotransposons in humans. Genome Res. 14, 1221–1231 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Boissinot, S. & Furano, A. V. The recent evolution of human L1 retrotransposons. Cytogenet. Genome Res. 110, 402–406 (2005).

    CAS  PubMed  Google Scholar 

  37. 37

    Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010). Description of full-length LINE-1 polymorphisms in human populations, and identification of a subset of highly active elements for retrotransposition.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Huang, C. R. et al. Mobile interspersed repeats are major structural variants in the human genome. Cell 141, 1171–1182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Iskow, R. C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253–1261 (2010). Demonstration that massively parallel sequencing can be targeted to recover germline and somatically acquired retrotransposon insertions.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Deininger, P. Alu elements: know the SINEs. Genome Biol. 12, 236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Witherspoon, D. J. et al. Mobile element scanning (ME-Scan) by targeted high-throughput sequencing. BMC Genomics 11, 410 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Witherspoon, D. J. et al. Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations. Genome Res. 23, 1170–1181 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Jurka, J., Zietkiewicz, E. & Labuda, D. Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era. Nucleic Acids Res. 23, 170–175 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Smit, A. F. & Riggs, A. D. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 23, 98–102 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Hancks, D. C., Mandal, P. K., Cheung, L. E. & Kazazian, H. H. Jr. The minimal active human SVA retrotransposon requires only the 5′-hexamer and Alu-like domains. Mol. Cell. Biol. 32, 4718–4726 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Hancks, D. C. & Kazazian, H. H. Jr. SVA retrotransposons: evolution and genetic instability. Semin. Cancer Biol. 20, 234–245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Smit, A. F. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 21, 1863–1872 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Dewannieux, M. et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 16, 1548–1556 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Belshaw, R. et al. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J. Virol. 79, 12507–12514 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Hughes, J. F. & Coffin, J. M. Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc. Natl Acad. Sci. USA 101, 1668–1672 (2004).

    CAS  PubMed  Google Scholar 

  51. 51

    Turner, G. et al. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr. Biol. 11, 1531–1535 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Smit, A. F. & Riggs, A. D. Tiggers and DNA transposon fossils in the human genome. Proc. Natl Acad. Sci. USA 93, 1443–1448 (1996).

    CAS  PubMed  Google Scholar 

  53. 53

    Roth, D. B. & Craig, N. L. VDJ recombination: a transposase goes to work. Cell 94, 411–414 (1998).

    CAS  PubMed  Google Scholar 

  54. 54

    Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    CAS  PubMed  Google Scholar 

  55. 55

    Hencken, C. G., Li, X. & Craig, N. L. Functional characterization of an active Rag-like transposase. Nat. Struct. Mol. Biol. 19, 834–836 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    CAS  PubMed  Google Scholar 

  57. 57

    Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e181 (2005).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Huang, S. et al. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166, 102–114 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Liu, D. et al. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol. Cell. Biol. 27, 1125–1132 (2007).

    PubMed  Google Scholar 

  60. 60

    Majumdar, S., Singh, A. & Rio, D. C. The human THAP9 gene encodes an active P-element DNA transposase. Science 339, 446–448 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Henssen, A. G. et al. Genomic DNA transposition induced by human PGBD5. Elife 4, e10565 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    CAS  PubMed  Google Scholar 

  63. 63

    Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).

    CAS  PubMed  Google Scholar 

  64. 64

    Imbeault, M., Helleboid, P. Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017).

    CAS  PubMed  Google Scholar 

  65. 65

    Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Quenneville, S. et al. The KRAB−ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2, 766–773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    CAS  PubMed  Google Scholar 

  68. 68

    Turelli, P. et al. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 24, 1260–1270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Alves, G., Tatro, A. & Fanning, T. Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene 176, 39–44 (1996).

    CAS  PubMed  Google Scholar 

  70. 70

    Shukla, R. et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 101–111 (2013). Mapping of LINE-1 insertions in hepatocellular carcinoma and tracking of inherited and acquired LINE-1 in non-coding DNA that relate to pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Tubio, J. M. et al. Mobile DNA in cancer: extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343 (2014). Demonstration of a set of source elements responsible for LINE-1 retrotransposition with 3′ transduction in human cancers.

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Scott, E. C. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 26, 745–755 (2016). Description of a second somatically acquired LINE-1 insertion in the APC gene, which could be traced to a source element that escaped silencing in the normal colon.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Daskalos, A. et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int. J. Cancer 124, 81–87 (2009).

    CAS  PubMed  Google Scholar 

  74. 74

    Saito, K. et al. Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin. Cancer Res. 16, 2418–2426 (2010).

    CAS  PubMed  Google Scholar 

  75. 75

    Ogino, S. et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J. Natl Cancer Inst. 100, 1734–1738 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Iwagami, S. et al. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann. Surg. 257, 449–455 (2013).

    PubMed  Google Scholar 

  77. 77

    van Hoesel, A. Q. et al. Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study. Breast Cancer Res. Treat. 134, 1103–1114 (2012).

    PubMed  Google Scholar 

  78. 78

    Harada, K. et al. LINE-1 methylation level and patient prognosis in a database of 208 hepatocellular carcinomas. Ann. Surg. Oncol. 22, 1280–1287 (2015).

    PubMed  Google Scholar 

  79. 79

    Pattamadilok, J. et al. LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int. J. Gynecol. Cancer 18, 711–717 (2008).

    CAS  PubMed  Google Scholar 

  80. 80

    Hall, L. L. et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156, 907–919 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Skowronski, J., Fanning, T. G. & Singer, M. F. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol. Cell. Biol. 8, 1385–1397 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Belancio, V. P., Hedges, D. J. & Deininger, P. LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 34, 1512–1521 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Belancio, V. P., Roy-Engel, A. M. & Deininger, P. The impact of multiple splice sites in human L1 elements. Gene 411, 38–45 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Deininger, P. & Belancio, V. P. Detection of LINE-1 RNAs by northern blot. Methods Mol. Biol. 1400, 223–236 (2016).

    PubMed  Google Scholar 

  85. 85

    Philippe, C. et al. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. Elife 5, e13926 (2016). Description of a tailored approach to RNA-seq and ChIP-sequencing, which can be used to identify loci expressing LINE-1 unit transcripts.

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Deininger, P. et al. A comprehensive approach to expression of L1 loci. Nucleic Acids Res. 45, e31 (2016).

    Google Scholar 

  87. 87

    Pickeral, O. K., Makalowski, W., Boguski, M. S. & Boeke, J. D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10, 411–415 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Jr. Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9, 653–657 (2000).

    CAS  PubMed  Google Scholar 

  89. 89

    Matlik, K., Redik, K. & Speek, M. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006, 71753 (2006).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Criscione, S. W. et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genomics 17, 463 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Roman-Gomez, J. et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24, 7213–7223 (2005).

    CAS  PubMed  Google Scholar 

  93. 93

    Lin, L. et al. Multiple forms of genetic instability within a 2-Mb chromosomal segment of 3q26.3−q27 are associated with development of esophageal adenocarcinoma. Genes Chromosomes Cancer 45, 319–331 (2006).

    CAS  PubMed  Google Scholar 

  94. 94

    Cruickshanks, H. A. & Tufarelli, C. Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics 94, 397–406 (2009).

    CAS  PubMed  Google Scholar 

  95. 95

    Weber, B., Kimhi, S., Howard, G., Eden, A. & Lyko, F. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 29, 5775–5784 (2010).

    CAS  PubMed  Google Scholar 

  96. 96

    Wolff, E. M. et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 6, e1000917 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. 97

    Hur, K. et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63, 635–646 (2014).

    CAS  PubMed  Google Scholar 

  98. 98

    Denli, A. M. et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163, 583–593 (2015).

    CAS  PubMed  Google Scholar 

  99. 99

    Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Lamprecht, B. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571–579 (2010).

    CAS  Google Scholar 

  101. 101

    Babaian, A. et al. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene 35, 2542–2546 (2016).

    CAS  Google Scholar 

  102. 102

    Scarfo, I. et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 127, 221–232 (2016).

    CAS  PubMed  Google Scholar 

  103. 103

    Lock, F. E. et al. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 111, E3534–E3543 (2014).

    CAS  PubMed  Google Scholar 

  104. 104

    Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Cruickshanks, H. A. et al. Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer. Nucleic Acids Res. 41, 6857–6869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Domansky, A. N. et al. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472, 191–195 (2000).

    CAS  PubMed  Google Scholar 

  107. 107

    Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Holmes, S. E., Singer, M. F. & Swergold, G. D. Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J. Biol. Chem. 267, 19765–19768 (1992).

    CAS  PubMed  Google Scholar 

  109. 109

    Dombroski, B. A., Mathias, S. L., Nanthakumar, E., Scott, A. F. & Kazazian, H. H. Jr. Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    CAS  PubMed  Google Scholar 

  110. 110

    Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    CAS  PubMed  Google Scholar 

  111. 111

    Christensen, S. M., Bibillo, A. & Eickbush, T. H. Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction. Nucleic Acids Res. 33, 6461–6468 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Feng, Q., Moran, J. V., Kazazian, H. H. Jr & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    CAS  PubMed  Google Scholar 

  113. 113

    Mathias, S. L. et al. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    CAS  PubMed  Google Scholar 

  114. 114

    Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003). Study that compared commonly occurring LINE-1 insertions for retrotransposition activity in vitro and established the term hot LINE-1.

    CAS  PubMed  Google Scholar 

  115. 115

    Ullu, E. & Tschudi, C. Alu sequences are processed 7SL RNA genes. Nature 312, 171–172 (1984).

    CAS  PubMed  Google Scholar 

  116. 116

    Zietkiewicz, E., Richer, C., Sinnett, D. & Labuda, D. Monophyletic origin of Alu elements in primates. J. Mol. Evol. 47, 172–182 (1998).

    CAS  PubMed  Google Scholar 

  117. 117

    Ahl, V., Keller, H., Schmidt, S. & Weichenrieder, O. Retrotransposition and crystal structure of an Alu RNP in the ribosome-stalling conformation. Mol. Cell 60, 715–727 (2015).

    CAS  PubMed  Google Scholar 

  118. 118

    Doucet, A. J., Wilusz, J. E., Miyoshi, T., Liu, Y. & Moran, J. V. A. 3′ Poly(A) tract is required for LINE-1 retrotransposition. Mol. Cell 60, 728–741 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012). Demonstration of the different types of human cancer that support LINE-1 retrotransposition.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Hohjoh, H. & Singer, M. F. Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J. Mol. Biol. 271, 7–12 (1997).

    CAS  PubMed  Google Scholar 

  121. 121

    Hohjoh, H. & Singer, M. F. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16, 6034–6043 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Martin, S. L., Branciforte, D., Keller, D. & Bain, D. L. Trimeric structure for an essential protein in L1 retrotransposition. Proc. Natl Acad. Sci. USA 100, 13815–13820 (2003).

    CAS  PubMed  Google Scholar 

  123. 123

    Khazina, E. et al. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat. Struct. Mol. Biol. 18, 1006–1014 (2011).

    CAS  PubMed  Google Scholar 

  124. 124

    Hohjoh, H. & Singer, M. F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15, 630–639 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Kulpa, D. A. & Moran, J. V. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum. Mol. Genet. 14, 3237–3248 (2005).

    CAS  PubMed  Google Scholar 

  126. 126

    Taylor, M. S. et al. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 155, 1034–1048 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Rodic, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014). A survey of different types of human cancer that aberrantly express LINE-1-encoded ORF1p.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Leibold, D. M. et al. Translation of LINE-1 DNA elements in vitro and in human cells. Proc. Natl Acad. Sci. USA 87, 6990–6994 (1990).

    CAS  PubMed  Google Scholar 

  129. 129

    Ardeljan, D., Taylor, M. S., Ting, D. T. & Burns, K. H. The human long interspersed element-1 retrotransposon: an emerging biomarker of neoplasia. Clin. Chem. (2017).

  130. 130

    Achanta, P. et al. Somatic retrotransposition is infrequent in glioblastomas. Mob. DNA 7, 22 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Wylie, A. et al. p53 genes function to restrain mobile elements. Genes Dev. 30, 64–77 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Rodic, N. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat. Med. 21, 1060–1064 (2015). Profile of LINE-1 insertion sites in primary and metastatic PDAC samples, inferring when and where new insertions were acquired.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Goodier, J. L., Zhang, L., Vetter, M. R. & Kazazian, H. H. Jr. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol. Cell. Biol. 27, 6469–6483 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Sokolowski, M. et al. Development of a monoclonal antibody specific to the endonuclease domain of the human LINE-1 ORF2 protein. Mob. DNA 5, 29 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    De Luca, C. et al. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation. Oncotarget 7, 4048–4061 (2016).

    PubMed  Google Scholar 

  136. 136

    Denne, M. et al. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J. Virol. 81, 5607–5616 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Mangeney, M., de Parseval, N., Thomas, G. & Heidmann, T. The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J. Gen. Virol. 82, 2515–2518 (2001).

    CAS  PubMed  Google Scholar 

  138. 138

    Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992). Description of the discovery of a somatically acquired LINE-1 insertion in the APC gene that causes colon cancer.

    CAS  PubMed  Google Scholar 

  139. 139

    Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer 1, 55–67 (2001).

    CAS  PubMed  Google Scholar 

  140. 140

    Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  Google Scholar 

  141. 141

    Joslyn, G. et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 66, 601–613 (1991).

    CAS  PubMed  Google Scholar 

  142. 142

    Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  PubMed  Google Scholar 

  143. 143

    Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  Google Scholar 

  144. 144

    Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Cost, G. J., Feng, Q., Jacquier, A. & Boeke, J. D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899–5910 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Jurka, J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl Acad. Sci. USA 94, 1872–1877 (1997).

    CAS  Google Scholar 

  147. 147

    Ostertag, E. M. & Kazazian, H. H. Jr. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res. 11, 2059–2065 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Solyom, S. et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 22, 2328–2338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Doucet-O'Hare, T. T. et al. LINE-1 expression and retrotransposition in Barrett's esophagus and esophageal carcinoma. Proc. Natl Acad. Sci. USA 112, E4894–E4900 (2015).

    CAS  PubMed  Google Scholar 

  150. 150

    Doucet-O'Hare, T. T. et al. Somatically acquired LINE-1 insertions in normal esophagus undergo clonal expansion in esophageal squamous cell carcinoma. Hum. Mutat. 37, 942–954 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Ewing, A. D. et al. Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res. 25, 1536–1545 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Helman, E. et al. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res. 24, 1053–1063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Tang, Z. et al. Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc. Natl Acad. Sci. USA 114, E733–E740 (2017).

    CAS  PubMed  Google Scholar 

  154. 154

    Carreira, P. E. et al. Evidence for L1-associated DNA rearrangements and negligible L1 retrotransposition in glioblastoma multiforme. Mob. DNA 7, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. 155

    Holmes, S. E., Dombroski, B. A., Krebs, C. M., Boehm, C. D. & Kazazian, H. H. Jr. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat. Genet. 7, 143–148 (1994).

    CAS  PubMed  Google Scholar 

  156. 156

    Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).

    CAS  PubMed  Google Scholar 

  157. 157

    Macfarlane, C. M. et al. Transduction-specific ATLAS reveals a cohort of highly active L1 retrotransposons in human populations. Hum. Mutat. 34, 974–985 (2013).

    CAS  PubMed  Google Scholar 

  158. 158

    Ewing, A. D. et al. Retrotransposition of gene transcripts leads to structural variation in mammalian genomes. Genome Biol. 14, R22 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. 159

    Cooke, S. L. et al. Processed pseudogenes acquired somatically during cancer development. Nat. Commun. 5, 3644 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. 160

    Mir, A. A., Philippe, C. & Cristofari, G. euL1db: the European database of L1HS retrotransposon insertions in humans. Nucleic Acids Res. 43, D43–D47 (2015).

    CAS  PubMed  Google Scholar 

  161. 161

    Wheelan, S. J., Aizawa, Y., Han, J. S. & Boeke, J. D. Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res. 15, 1073–1078 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Lev-Maor, G. et al. Intronic Alus influence alternative splicing. PLoS Genet. 4, e1000204 (2008).

    PubMed  PubMed Central  Google Scholar 

  164. 164

    Symer, D. E. et al. Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110, 327–338 (2002).

    CAS  PubMed  Google Scholar 

  165. 165

    Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002).

    CAS  PubMed  Google Scholar 

  166. 166

    Lehrman, M. A. et al. Mutation in LDL receptor: Alu−Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science 227, 140–146 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Rahbari, R. & Badge, R. M. Combining amplification typing of L1 active subfamilies (ATLAS) with high-throughput sequencing. Methods Mol. Biol. 1400, 95–106 (2016).

    PubMed  Google Scholar 

  168. 168

    Streva, V. A. et al. Sequencing, identification and mapping of primed L1 elements (SIMPLE) reveals significant variation in full length L1 elements betweenindividuals. BMC Genomics 16, 220 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. 169

    Quentin, Y. Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res. 20, 487–493 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kathleen H. Burns.

Ethics declarations

Competing interests

Johns Hopkins University School of Medicine has licensed long interspersed element-1 (LINE-1) open reading frame 1p (ORF1p) monoclonal antibodies developed in the Burns laboratory for commercial production (K.H.B.).

Related links


The Cancer Genome Atlas

PowerPoint slides



A mechanism used by transposable elements to copy RNA intermediates to genomic DNA.

Centromeric satellites

Arrays of tandem, simple repeats at the regions of chromosomes that attach to the mitotic spindle.

Human reference genome assembly

A version of the human genome, for example, the human Dec. 2013 (GRCh38/hg38) assembly. Structural variants caused by mobile element insertions are not consistently incorporated.

Source element

Full-length genomic long interspersed element-1 (LINE-1) sequence capable of retrotransposition.

PIWI-interacting RNAs

(piRNAs). Small RNAs (26–31 nucleotides) that bind to PIWI family proteins and have key roles in silencing retroelements.

Short read alignments

Alignments of short reads from massively parallel sequencing (MPS) studies to a reference sequence; for example, to the human reference genome assembly.

Target primed reverse transcription

(TPRT). The molecular process executed by long interspersed element-1 (LINE-1) open reading frame 2p (ORF2p), using a strand of target site DNA to prime reverse transcription of an RNA.


The tendency of long interspersed element-1 (LINE-1)-encoded open reading frame 2p (ORF2p) to associate with and reverse transcribe the RNA strand that encoded the protein. This opposes other RNA species that co-opt ORF2p by association in trans.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burns, K. Transposable elements in cancer. Nat Rev Cancer 17, 415–424 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing