Perspective

CNO Evil? Considerations for the Use of DREADDs in Behavioral Neuroscience

  • Neuropsychopharmacology volume 43, pages 934936 (2018)
  • doi:10.1038/npp.2017.299
  • Download Citation
Received:
Revised:
Accepted:
Published:

Response to Gomez et al (2017) “Chemogenetics revealed: DREADD occupancy and activation via converted clozapine.” Science, 357 (6350), 503–507.

  • Subscribe to Neuropsychopharmacology for full access:

    $481

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. , , , , (2007). Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104: 5163–5168.

  2. , (1996). Pharmacological actions of the atypical antipsychotic drug clozapine: a review. Synapse 24: 349–394.

  3. , , , , , et al (2013). DREADDs in Drosophila: a pharmacogenetic approach for controlling behavior, neuronal signaling, and physiology in the fly. Cell Rep 4: 1049–1059.

  4. , , , (1999). Interspecies variability and drug interactions of clozapine metabolism by microsomes. Fundam Clin Pharmacol 13: 577–581.

  5. , , , , , et al (2016). Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 18: 817–826.

  6. , , , , , et al (2015). The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem Neurosci 6: 476–484.

  7. , , , (2012). Microdialysis evaluation of clozapine and N-desmethylclozapine pharmacokinetics in rat brain. Drug Metab Dispos 40: 1909–1916.

  8. , , , , , et al (2014). Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124: 3215–3229.

  9. , , , , , et al (2016). A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci 19: 1743–1749.

  10. , , , , (1997). The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol 44: 439–446.

  11. (2000). Metabolism of clozapine by rat brain: the role of flavin-containing monooxygenase (FMO) and cytochrome P450 enzymes. Eur J Drug Metab Pharmacokinet 25: 109–114.

  12. , , , , , et al (2017). Glutamatergic projections from the entorhinal cortex to dorsal dentate gyrus mediate context-induced reinstatement of heroin seeking. Neuropsychopharmacology 42: 1860–1870.

  13. , , , , , et al (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357: 503–507.

  14. , , (2011). The effect of psychotropic drugs on cytochrome P450 2D (CYP2D) in rat brain. Eur J Pharmacol 651: 51–58.

  15. , , , (2016). An ex vivo model for evaluating blood-brain barrier permeability, efflux, and drug metabolism. ACS Chem Neurosci 7: 668–680.

  16. , , (1994). Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch Int Pharmacodyn Ther 328: 243–250.

  17. , , , , , et al (2017). Basolateral amygdala to orbitofrontal cortex projections enable cue-triggered reward expectations. J Neurosci 37: 8374–8384.

  18. , , , (1994). Decomposition of clozapine N-oxide in the qualitative and quantitative analysis of clozapine and its metabolites. J Pharm Sci 83: 1412–1417.

  19. , , , , et al (2016). Clozapine N-oxide administration produces behavioral effects in Long-Evans rats: implications for designing DREADD experiments. eNeuro 3. pii: ENEURO.0219-16.2016. eCollection 2016 Sep-Oct.

  20. , , , , , et al (2014). Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17: 577–585.

  21. , (1995). Thermal degradation of clozapine-N-oxide to clozapine during gas chromatographic analysis. J Chromatogr B Biomed Appl 668: 171–174.

  22. , (2017). Dorsal hippocampus drives context-induced cocaine seeking via inputs to lateral septum. Neuropsychopharmacology (doi: 10.1038/npp.2017.144; e-pub ahead of print).

  23. , (2012). Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82: 575–582.

  24. , , , , (1995). Metabolism and bioactivation of clozapine by human liver in vitro. J Pharmacol Exp Ther 272: 984–990.

  25. (2016). DREADDs for neuroscientists. Neuron 89: 683–694.

  26. , , , (2008). Multi-receptor binding profile of clozapine and olanzapine: a structural study based on the new beta2 adrenergic receptor template. ChemMedChem 3: 1194–1198.

  27. , , , , (2008). Expression, activity and regulation of CYP3A in human and rodent brain. Drug Metab Rev 40: 149–168.

  28. , , , , (2008). Interindividual variation in relative CYP1A2/3A4 phenotype influences susceptibility of clozapine oxidation to cytochrome P450-specific inhibition in human hepatic microsomes. Drug Metab Dispos 36: 2547–2555.

Download references

Acknowledgements

Funding provided by R00 DA035251, the University of California Irvine, and the Irvine Center for Addiction Neuroscience.

Author information

Affiliations

  1. Department of Neurobiology and Behavior, University of California, Irvine, CA, USA

    • Stephen V Mahler
  2. Brain Health Institute, Rutgers University, Piscataway, NJ, USA

    • Gary Aston-Jones

Authors

  1. Search for Stephen V Mahler in:

  2. Search for Gary Aston-Jones in:

Corresponding author

Correspondence to Stephen V Mahler.