Demystifying traditional herbal medicine with modern approach


Plants have long been recognized for their therapeutic properties. For centuries, indigenous cultures around the world have used traditional herbal medicine to treat a myriad of maladies. By contrast, the rise of the modern pharmaceutical industry in the past century has been based on exploiting individual active compounds with precise modes of action. This surge has yielded highly effective drugs that are widely used in the clinic, including many plant natural products and analogues derived from these products, but has fallen short of delivering effective cures for complex human diseases with complicated causes, such as cancer, diabetes, autoimmune disorders and degenerative diseases. While the plant kingdom continues to serve as an important source for chemical entities supporting drug discovery, the rich traditions of herbal medicine developed by trial and error on human subjects over thousands of years contain invaluable biomedical information just waiting to be uncovered using modern scientific approaches. Here we provide an evolutionary and historical perspective on why plants are of particular significance as medicines for humans. We highlight several plant natural products that are either in the clinic or currently under active research and clinical development, with particular emphasis on their mechanisms of action. Recent efforts in developing modern multi-herb prescriptions through rigorous molecular-level investigations and standardized clinical trials are also discussed. Emerging technologies, such as genomics and synthetic biology, are enabling new ways for discovering and utilizing the medicinal properties of plants. We are entering an exciting era where the ancient wisdom distilled into the world's traditional herbal medicines can be reinterpreted and exploited through the lens of modern science.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Four successful cases of single plant natural products that have been isolated from their respective medicinal plant hosts and introduced into the clinic for treatment of various human diseases.
Figure 2: Structural basis for the therapeutic effects of several plant natural products in the context of interaction with their primary mammalian protein targets.
Figure 3: A new workflow for exploring and exploiting medicinal properties of plants in the post-omics era.


  1. 1

    The Plant List (accessed 1 June 2017);

  2. 2

    Weng, J.-K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants. Science 336, 1660–1677 (2012).

    Article  Google Scholar 

  3. 3

    Hardy, K. et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Lietava, J. Medicinal plants in a Middle Paleolithic grave Shanidar IV? J. Ethnopharmacol. 35, 263–266 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Aboelsoud, N. H. Herbal medicine in ancient Egypt. J. Med. Plants Res. 4, 82–86 (2010).

    Google Scholar 

  6. 6

    Yang, S. The Divine Farmer's Materia Medica: A Translation of the Shen Nong Ben Cao Jing (Blue Poppy Press, 1998).

    Google Scholar 

  7. 7

    Li, S. The Ben Cao Gang Mu: Chinese Edition (Univ. California Press, 2016).

    Google Scholar 

  8. 8

    Patridge, E., Gareiss, P., Kinch, M. S. & Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today 21, 204–207 (2015).

    Article  Google Scholar 

  9. 9

    Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    CAS  Article  Google Scholar 

  10. 10

    Neuss, N., Gorman, M., Svoboda, G. H., Maciak, G. & Beer, C. T. Vinca alkaloids. III.1 Characterization of leurosine and vincaleukoblastine, new alkaloids from Vinca Rosea Linn. J. Am. Chem. Soc. 81, 4754–4755 (1959).

    CAS  Article  Google Scholar 

  11. 11

    Kiyohara, H., Matsumoto, T. & Yamada, H. Combination effects of herbs in a multi-herbal formula: expression of Juzen-taiho-to's immuno-modulatory activity on the intestinal immune system. eCAM 1, 83–91 (2004).

    PubMed  Google Scholar 

  12. 12

    Phillipson, J. D. Phytochemistry and medicinal plants. Phytochemistry 56, 237–243 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Courtwright, D. T. Forces of Habit: Drugs and the Making of the Modern World (Harvard Univ. Press, 2001).

    Google Scholar 

  14. 14

    Manglik, A. et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Huang, W. et al. Structural insights into μ-opioid receptor activation. Nature 524, 315–321 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Vaughan, C. W., Ingram, S. L., Connor, M. A. & Christie, M. J. How opioids inhibit GABA-mediated neurotransmission. Nature 390, 611–614 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Snyder, J. P., Nettles, J. H., Cornett, B., Downing, K. H. & Nogales, E. The binding conformation of Taxol in β-tubulin: a model based on electron crystallographic density. Proc. Natl Acad. Sci. USA 98, 5312–5316 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Saville, M. W. et al. Treatment of HIV-associated Kaposi's sarcoma with paclitaxel. Lancet 346, 26–28 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Gigant, B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519–522 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Khoury, H. J. et al. Omacetaxine mepesuccinate in patients with advanced chronic myeloid leukemia with resistance or intolerance to tyrosine kinase inhibitors. Leuk. Lymphoma 56, 120–127 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Garreau de Loubresse, N. et al. Structural basis for the inhibition of the eukaryotic ribosome. Nature 513, 517–522 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Gandhi, V., Plunkett, W. & Cortes, J. E. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin. Cancer Res. 20, 1735–1740 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Gu, Y. et al. Small-molecule induction of phospho-eIF4E sumoylation and degradation via targeting its phosphorylated serine 209 residue. Oncotarget 6, 15111–15121 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Staker, B. L. et al. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl Acad. Sci. USA 99, 15387–15392 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Ulukan, H. & Swaan, P. W. Camptothecins. Drugs 62, 2039–2057 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Damayanthi, Y. & Lown, J. W. Podophyllotoxins: current status and recent developments. Curr. Med. Chem. 5, 205–252 (1998).

    CAS  PubMed  Google Scholar 

  27. 27

    Wu, C. C. et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459–462 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Meng, Z. P. et al. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca2+/calmodulin-dependent protein kinase II. Mol. Cancer Ther. 12, 2067–2077 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Gu, Y. et al. CaMKII γ, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood 120, 4829–4839 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Stickel, S. A., Gomes, N. P., Frederick, B., Raben, D. & Su, T. T. Bouvardin is a radiation modulator with a novel mechanism of action. Radiat. Res. 184, 392–403 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Zalacain, M., Zaera, E., Vazquez, D. & Jimenez, A. The mode of action of the antitumor drug bouvardin, an inhibitor of protein synthesis in eukaryotic cells. FEBS Lett. 148, 95–97 (1982).

    CAS  Article  Google Scholar 

  33. 33

    Wink, M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 17, 12771–12791 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 17, 1217–1220 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Wang, J. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 6, 10111 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Wu, Y. et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell. Mol. Immunol. 13, 379–390 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Li, J. et al. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell 168, 86–100 (2017).

    CAS  Article  Google Scholar 

  38. 38

    Lai, H. C., Singh, N. P. & Sasaki, T. Development of artemisinin compounds for cancer treatment. Invest. New Drugs 31, 230–246 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Samochocki, M. et al. Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 305, 1024–1036 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Raves, M. L. et al. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (–)-huperzine A. Nat. Struct. Biol. 4, 57–63 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Coleman, B. R. et al. [+]-Huperzine A treatment protects against N-methyl-d-aspartate-induced seizure/status epilepticus in rats. Chem. Biol. Interact. 175, 387–395 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Wang, H. et al. Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J. Biol. Chem. 281, 21469–21479 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Leung, D. Y. et al. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 348, 986–993 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Srivastava, K. D. et al. The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of peanut allergy. J. Allergy Clin. Immunol. 115, 171–178 (2005).

    Article  Google Scholar 

  45. 45

    Srivastava, K. D. et al. Food Allergy Herbal Formula-2 silences peanut-induced anaphylaxis for a prolonged posttreatment period via IFN-γ–producing CD8+ T cells. J. Allergy Clin. Immunol. 123, 443–451 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Kattan, J. D. et al. Pharmacological and immunological effects of individual herbs in the Food Allergy Herbal Formula-2 (FAHF-2) on peanut allergy. Phytother. Res. 22, 651–659 (2008).

    Article  Google Scholar 

  47. 47

    Ehrlich, H. Food Allergies: Traditional Chinese Medicine, Western Science, and the Search for a Cure (Third Avenue Books, 2014).

    Google Scholar 

  48. 48

    Wen, M. C. et al. Efficacy and tolerability of anti-asthma herbal medicine intervention in adult patients with moderate-severe allergic asthma. J. Allergy Clin. Immunol. 116, 517–524 (2005).

    Article  Google Scholar 

  49. 49

    Srivastava, K., Sampson, H. A., Emala, C. W. Sr & Li, X. M. The anti-asthma herbal medicine ASHMI acutely inhibits airway smooth muscle contraction via prostaglandin E2 activation of EP2/EP4 receptors. Am. J. Physiol. Lung Cell Mol. Physiol. 305, 1002–1010 (2013).

    Article  Google Scholar 

  50. 50

    Srivastava, K. D., Sampson, H. A. & Li, X. The anti-asthma chinese herbal formula ASHMI provides more persistent benefits than dexamethasone in a murine asthma model. J. Allergy Clin. Immunol. 127, AB261 (2011).

    Article  Google Scholar 

  51. 51

    Yang, N. et al. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction. Phytochemistry 95, 259–267 (2013).

    CAS  Article  Google Scholar 

  52. 52

    Yang, N. et al. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res. 27, 1381–1391 (2013).

    CAS  Article  Google Scholar 

  53. 53

    Liu, C. et al. Ganoderic acid C1 isolated from the anti-asthma formula, ASHMITM suppresses TNF-α production by mouse macrophages and peripheral blood mononuclear cells from asthma patients. Int. Immunopharmacol. 27, 224–231 (2015).

    CAS  Article  Google Scholar 

  54. 54

    Lam, W. et al. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci. Rep. 5, 9384 (2015).

    CAS  Article  Google Scholar 

  55. 55

    Lam, W. et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci. Transl. Med. 2, 45ra59 (2010).

    Article  Google Scholar 

  56. 56

    Chan, K. et al. Good practice in reviewing and publishing studies on herbal medicine, with special emphasis on traditional Chinese medicine and Chinese materia medica. J. Ethnopharmacol. 140, 469–475 (2012).

    Article  Google Scholar 

  57. 57

    Luo, D. et al. Compound Danshen dripping pill for treating early diabetic retinopathy: a randomized, double-dummy, double-blind study. eCAM 2015, 539185 (2015).

    PubMed  Google Scholar 

  58. 58

    Avanzas, P. & Kaski, J. C. Pharmacological Treatment of Chronic Stable Angina Pectoris (Springer, 2015).

    Google Scholar 

  59. 59

    Tagliaferri, M. A. et al. A phase IIb trial of coix seed injection for advanced pancreatic cancer. J. Clin. Oncol. 31, e16023 (2013).

    Google Scholar 

  60. 60

    Liu, C., Hu, Y., Xu, L., Liu, C. & Liu, P. Effect of Fuzheng Huayu formula and its actions against liver fibrosis. Chi. Med. 4, 12 (2009).

    Article  Google Scholar 

  61. 61

    Szasz, T. Psychiatry and the control of dangerousness: on the apotropaic function of the term “mental illness”. J. Med. Ethics 29, 227–230 (2003).

    CAS  Article  Google Scholar 

  62. 62

    Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    CAS  Article  Google Scholar 

  63. 63

    Lee, J. et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat. Med. 22, 1023–1032 (2016).

    CAS  Article  Google Scholar 

  64. 64

    Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013).

    CAS  Article  Google Scholar 

  65. 65

    O’Connor, S. E. Engineering of secondary metabolism. Annu. Rev. Genet. 49, 71–94 (2015).

    Article  Google Scholar 

  66. 66

    Cook, D. et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat. Rev. Drug. Discov. 13, 419–431 (2014).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jing-Ke Weng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Weng, J. Demystifying traditional herbal medicine with modern approach. Nature Plants 3, 17109 (2017).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing