Neglecting legumes has compromised human health and sustainable food production

Abstract

The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner ‘nutritious seeds for a sustainable future’. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets, and legume crops are greatly under-used. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: World production of cereal and grain legumes over the past 50 years.
Figure 2: The relationship between changes in yield and world area harvested for different grain legumes over the past 50 years.
Figure 3: World grain legume production in 2013.
Figure 4: Taxonomic relationships within the Papilionideae family showing the two major clades of cultivated legume, the cool season Hologalegina (blue) and the warm season Phaseoloids (light green).
Figure 5: Phenotypic variability in chickpea germplasm conserved at ICRISAT, India.
Figure 6: Major strategies in genomics-assisted crop improvement for grain legumes.

References

  1. 1

    Peoples, M. B., Herridge, D. F. & Ladha, J. K. Biological nitrogen-fixation — an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174, 3–28 (1995).

    CAS  Google Scholar 

  2. 2

    Siddique, K. H. M., Johansen, C. & Turner, N. C. Innovations in agronomy for food legumes. Agron. Sustain. Dev. 32, 45–64 (2012).

    Google Scholar 

  3. 3

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  PubMed  Google Scholar 

  4. 4

    Barton, L., Thamo, T., Engelbrecht, D. & Biswas, W. K. Does growing grain legumes or applying lime cost effectively lower greenhouse gas emissions from wheat production in a semi-arid climate?. J. Clean Prod. 83, 194–203 (2014).

    Google Scholar 

  5. 5

    Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

  6. 6

    Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    CAS  Google Scholar 

  7. 7

    Reeves, T. G., Thomas, G. & Ramsay, G. Save and Grow in Practice: Maize, Rice, Wheat. A Guide to Sustainable Cereal Production (FAO UN, 2016).

    Google Scholar 

  8. 8

    Malik, A. I. et al. Relay sowing of lentil (Lens culinaris subsp. culinaris) to intensify rice-based cropping. J. Agr. Sci. 154, 850–857 (2015).

    Google Scholar 

  9. 9

    Huang, L.-F. et al. Plant–soil feedbacks and soil sickness: from mechanisms to application in agriculture. J. Chem. Ecol. 39, 232–242 (2013).

    CAS  PubMed  Google Scholar 

  10. 10

    Nayyar, A., Hamel, C., Lafond, G., Gossen, B. D. & Hanson, K. Soil microbial quality associated with yield reduction in continuous-pea. Appl. Soil Ecol. 43, 115–121 (2009).

  11. 11

    Johansen, C. et al. Integrated crop management of chickpea in environments of Bangladesh prone to botrytis grey mould. Field Crops Res. 108, 238–249 (2008).

    Google Scholar 

  12. 12

    Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Mourtzinis, S. et al. Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season-specific responses. Nature Plants 1, 14026 (2015).

  14. 14

    Beebe, S. et al. in Crop Adaptation to Climate Change ( eds Yadav, S. S., Redden, R. J., Hatfield, J. L., Lotze-Campen, H. & Hall, A. E. ) Ch. 16 (Wiley-Blackwell, 2011).

    Google Scholar 

  15. 15

    Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agr. Forest Meteorol. 218–219 102–113 (2016).

  16. 16

    Peltonen-Sainio, P., Jauhiainen, L., Hakala, K. & Ojanen, H. Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agr. Food Sci. 18, 171–190 (2009).

    Google Scholar 

  17. 17

    Andrews, M. & Hodge, S. in Climate Change and Management of Cool Season Grain Legume Crops (eds Yadav, S. S., McNeil, D. L., Redden, R. & Patil, S. A. ) Ch. 1 (2010).

  18. 18

    Bhatia, V. S., Singh, P., Wani, S. P., Kesava Rao, A. V. R. & Srinivas, K. Yield Gap Analysis of Soybean, Groundnut, Pigeonpea and Chickpea in India Using Simulation Modeling. Report No. 31 (International Crops Research Institute for the Semi-Arid Tropics, 2006).

    Google Scholar 

  19. 19

    Anderson, W., Johansen, C. & Siddique, K. H. M. Addressing the yield gap in rainfed crops: a review. Agron. Sustain. Dev. 36, 18 (2016).

    CAS  Google Scholar 

  20. 20

    Oldroyd, G. E. D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev. Microbiol. 11, 252–263 (2013).

    CAS  Google Scholar 

  21. 21

    Li, Y. Z., Green, L. S., Holtzapffel, R., Day, D. A. & Bergersen, F. J. Supply of O2 regulates demand for O2 and uptake of malate by N2-fixing bacteroids from soybean nodules. Microbiology 147, 663–670 (2001).

    CAS  PubMed  Google Scholar 

  22. 22

    Reid, D. E., Ferguson, B. J. & Gresshoff, P. M. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol. Plant Microbe In. 24, 606–618 (2011).

    CAS  Google Scholar 

  23. 23

    Li, X. X., Sorensen, P., Li, F. C., Petersen, S. O. & Olesen, J. E. Quantifying biological nitrogen fixation of different catch crops, and residual effects of roots and tops on nitrogen uptake in barley using in-situ N-15 labelling. Plant Soil 395, 273–287 (2015).

    CAS  Google Scholar 

  24. 24

    Bouguyon, E. et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants 1, 15015 (2015).

  25. 25

    Leran, S. et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Sci. Signal. 8, ra43 (2015).

    PubMed  Google Scholar 

  26. 26

    Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev. Microbiol. 6, 763–775 (2008).

    CAS  Google Scholar 

  27. 27

    Howieson, J. & Ballard, R. Optimising the legume symbiosis in stressful and competitive environments within southern Australia — some contemporary thoughts. Soil Biol. Biochem. 36, 1261–1273 (2004).

    CAS  Google Scholar 

  28. 28

    Puppo, A. et al. Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol. 165, 683–701 (2005).

    CAS  PubMed  Google Scholar 

  29. 29

    Cernay, C., Ben-Ari, T., Pelzer, E., Meynard, J. M. & Makowski, D. Estimating variability in grain legume yields across Europe and the Americas. Sci. Rep. 5, 11171 (2015).

  30. 30

    Farooq, M. et al. Drought stress in grain legumes during reproduction and grain filling. J. Agron. Crop Sci.http://dx.doi.org/10.1111/jac.12169 (2016).

  31. 31

    Daryanto, S., Wang, L. & Jacinthe, P. A. Global synthesis of drought effects on food legume production. PLoS ONE 10, e0127401 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Sinclair, T. R., Messina, C. D., Beatty, A. & Samples, M. Assessment across the United States of the benefits of altered soybean drought traits. Agron. J. 102, 475–482 (2010).

    Google Scholar 

  33. 33

    Devi, M. J., Sinclair, T. R., Beebe, S. E. & Rao, I. M. Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant Soil 364, 29–37 (2013).

    CAS  Google Scholar 

  34. 34

    Sinclair, T. R. et al. Variation among cowpea genotypes in sensitivity of transpiration rate and symbiotic nitrogen fixation to soil drying. Crop Sci. 55, 2270–2275 (2015).

    CAS  Google Scholar 

  35. 35

    Fairbanks, D. J. & Rytting, B. Mendelian controversies: a botanical and historical review. Am. J. Bot. 88, 737–752 (2001).

    CAS  PubMed  Google Scholar 

  36. 36

    Abbo, S., Berger, J. & Turner, N. C. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 30, 1081–1087 (2003).

    Google Scholar 

  37. 37

    Gizlice, Z., Carter, T. E. & Burton, J. W. Genetic base for north-American public soybean cultivars released between 1947 and 1988. Crop Sci. 34, 1143–1151 (1994).

    Google Scholar 

  38. 38

    Cowling, W. A. The challenge of breeding for increased grain production in an era of global climate change and genomics. World Agri. 5, 50–55 (2015).

    Google Scholar 

  39. 39

    Varshney, R. K. et al. Analytical and decision support tools for genomics-assisted breeding. Trends Plant Sci.http://dx.doi.org/10.1016/j.tplants.2015.10.018 (2015).

  40. 40

    Varshney, R. K. Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci. 242, 98–107 (2016).

    CAS  PubMed  Google Scholar 

  41. 41

    McCouch, S. et al. Feeding the future. Nature 499, 23–24 (2013).

    CAS  PubMed  Google Scholar 

  42. 42

    GENESYS (accessed 21 April 2016); http://www.genesys-pgr.org

  43. 43

    https://www.gene.affrc.go.jp/databases_en.php (accessed 21 April 2016).

  44. 44

    http://www.nbpgr.ernet.in/Research_Projects/Base_Collection_in_NGB.aspx (accessed 21 April 2016).

  45. 45

    Yang, H. et al. Sequencing consolidates molecular markers with plant breeding practice. Theor. Appl. Genet. 128, 779–795 (2015).

    CAS  PubMed  Google Scholar 

  46. 46

    Cowling, W. A. Sustainable plant breeding. Plant Breed. 132, 1–9 (2013).

    Google Scholar 

  47. 47

    Goddard, M. E. & Hayes, B. J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Rev. Genet. 10, 381–391 (2009).

    CAS  PubMed  Google Scholar 

  48. 48

    Hayes, B. J., Visscher, P. M. & Goddard, M. E. Increased accuracy of artificial selection by using the realized relationship matrix. Genet. Res. 91, 47–60 (2009).

    CAS  Google Scholar 

  49. 49

    Cowling, W. A. et al. Using the animal model to accelerate response to selection in a self-pollinating crop. Genes Genom. Genet. 5, 1419–1428 (2015).

    Google Scholar 

  50. 50

    Granier, C. & Vile, D. Phenotyping and beyond: modelling the relationships between traits. Curr. Opin. Plant Biol. 18, 96–102 (2014).

    PubMed  Google Scholar 

  51. 51

    Fahlgren, N., Gehan, M. A. & Baxter, I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24, 93–99 (2015).

    PubMed  Google Scholar 

  52. 52

    Ghanem, M. E., Marrou, H. & Sinclair, T. R. Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 20, 139–144 (2015).

    CAS  PubMed  Google Scholar 

  53. 53

    Steele, W. M., Allen, D. J. & Summerfield, R. J. in Grain Legume Crops (eds Summerfield, R. J. & Roberts, E. H. ) 520–583 (Collins, 1985).

    Google Scholar 

  54. 54

    Beebe, S. E., Rao, I. M., Blair, M. W. & Acosta-Gallegos, J. A. Phenotyping common beans for adaptation to drought. Front. Physiol. 4, 35 (2013).

  55. 55

    Nepolo, E., Takundwa, M., Chimwamurombe, P. M., Cullis, C. A. & Kunert, K. A review of geographical distribution of marama bean (Tylosema esculentum (Burchell) Schreiber) and genetic diversity in the Namibian germplasm. Afr. J. Biotechnol. 8, 2088–2093 (2009).

    CAS  Google Scholar 

  56. 56

    Kouris-Blazos, A. & Belski, R. Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pac. J. Clin. Nutr. 25, 1–17 (2016).

    CAS  PubMed  Google Scholar 

  57. 57

    Darmadi-Blackberry, I. et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac. J. Clin. Nutr. 13, 217–220 (2004).

    PubMed  Google Scholar 

  58. 58

    Chang, W. C. et al. A bean-free diet increases the risk of all-cause mortality among Taiwanese women: the role of the metabolic syndrome. Public Health Nutr. 15, 663–672 (2012).

    PubMed  Google Scholar 

  59. 59

    Trichopoulou, A. et al. Diet and overall survival in elderly people. Brit. Med. J. 311, 1457–1460 (1995).

    CAS  PubMed  Google Scholar 

  60. 60

    Kushi, L. H., Meyer, K. A. & Jacobs, D. R. Jr. Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. Am. J. Clin. Nutr. 70, 451–458 (1999).

    Google Scholar 

  61. 61

    Flight, I. & Clifton, P. Cereal grains and legumes in the prevention of coronary heart disease and stroke: a review of the literature. Eur. J. Clin. Nutr. 60, 1145–1159 (2006).

    CAS  PubMed  Google Scholar 

  62. 62

    Hashemi, Z. et al. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats. Appl. Physiol. Nutr. Metab. 40, 323–333 (2015).

    CAS  PubMed  Google Scholar 

  63. 63

    Nothlings, U. et al. Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population. J. Nutr. 138, 775–781 (2008).

    PubMed  Google Scholar 

  64. 64

    Sievenpiper, J. L. et al. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 52, 1479–1495 (2009).

    CAS  PubMed  Google Scholar 

  65. 65

    Lee, Y. P. et al. Lupin-enriched bread increases satiety and reduces energy intake acutely. Am. J. Clin. Nutr. 84, 975–980 (2006).

    CAS  PubMed  Google Scholar 

  66. 66

    Lee, Y. P. et al. Effects of lupin kernel flour-enriched bread on blood pressure: a controlled intervention study. Am. J. Clin. Nutr. 89, 766–772 (2009).

    CAS  PubMed  Google Scholar 

  67. 67

    Belski, R. et al. Effects of lupin-enriched foods on body composition and cardiovascular disease risk factors: a 12-month randomized controlled weight loss trial. Int. J. Obesity 35, 810–819 (2011).

    CAS  Google Scholar 

  68. 68

    Dove, E. R. et al. Lupin and soya reduce glycaemia acutely in type 2 diabetes. Brit. J. Nutr. 106, 1045–1051 (2011).

    CAS  PubMed  Google Scholar 

  69. 69

    Singh, J. & Basu, P. S. Non-nutritive bioactive compounds in pulses and their impact on human health: an overview. Food Nutr. Sci. 3, 1664–1672 (2012).

    CAS  Google Scholar 

  70. 70

    Singh, B. B., Ajeigbe, H. A., Tarawali, S. A., Fernandez-Rivera, S. & Abubakar, M. Improving the production and utilization of cowpea as food and fodder. Field Crop Res. 84, 169–177 (2003).

    Google Scholar 

  71. 71

    Lambot, C. in Challenges and Opportunities for Enhancing Sustainable Cowpea Production (eds Fatokun, C. A., Tarawali, S. A., Singh, B. B., Kormawa, P. M. & Tamò, M. ) 367–375 (International Institute of Tropical Agriculture, 2002).

    Google Scholar 

  72. 72

    Nadaraja, D., Weintraub, S. T., Hakala, K. W., Sherman, N. E. & Starcher, B. Isolation and partial sequence of a Kunitz-type elastase specific inhibitor from marama bean (Tylosema esculentum). J. Enzym. Inhib. Med. Chem. 25, 377–382 (2010).

    CAS  Google Scholar 

  73. 73

    Sulieman, S. & Tran, L. S. P. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci. 239, 36–43 (2015).

    CAS  PubMed  Google Scholar 

  74. 74

    http://www.most.gov.cn/ztzl/kjzykfgx/kjzygjjctjpt/kjzyptml/201407/t20140716_114275.htm (accessed 21 April 2016).

  75. 75

    Stoutjesdijk, P. Plant genetic resources for food and agriculture: second national report Technical Report 13.11 (ABARES, 2013)

    Google Scholar 

  76. 76

    Bennett, M. D. & Leitch I. J. Plant DNA C-values database (v.6.0, December 2012; accessed 21 April 2016); http://www.kew.org/cvalues/

  77. 77

    Simmonds, N. W. & Smartt, J. Principles of Crop Improvement 2nd edn (Blackwell Science, 1999).

    Google Scholar 

  78. 78

    Singh, R. J. et al. Landmark research in legumes. Genome 50, 525–537 (2007).

    CAS  PubMed  Google Scholar 

  79. 79

    FAOSTAT (accessed 5 January 2016); http://faostat3.fao.org/compare/E

  80. 80

    South, A. rworldmap: a new R package for mapping global data. The R Journal 3/1 35–43 (2011).

    Google Scholar 

  81. 81

    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1–2 (2014); http://CRAN.R-project.org/package=RColorBrewer

  82. 82

    Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54, 575–594 (2005).

    PubMed  Google Scholar 

  83. 83

    Gepts, P. et al. Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol. 137, 1228–1235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Katoh, K. & Standley, D. M. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nature Geosci. 1, 636–639 (2008).

    CAS  Google Scholar 

  87. 87

    Heffer, P. & Prud'homme, M. Fertilizer Outlook 2015–2019 (2015); www.fertilizer.org

  88. 88

    US Energy Information Administration Total Primary Energy Consumption (2015); www.eia.gov

  89. 89

    Storkey, J. et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528, 401–404 (2015).

    CAS  PubMed  Google Scholar 

  90. 90

    UNEP and WHRC Reactive Nitrogen in the Environment: Too Much or Too Little of a Good Thing? (The United Nations Environment Program, 2007); www.unep.org/pdf/dtie/Reactive_Nitrogen.pdf

  91. 91

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  PubMed  Google Scholar 

  92. 92

    Ladha, J. K. et al. Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6, 19355 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the World University Network (WUN) and research collaboration awards (UWA and the University of Leeds) for financial support. C.H.F. thanks the Biotechnology and Biological Sciences Research Council (BBSRC UK, BB/M009130/1) and the European Union (KBBE-2012-6-311840; ECOSEED) for financial support. J.W.C. thanks BBSRC UK and Wherry and Sons (UK) for an industrial CASE studentship (BB/K501839/1). H.-M.L. was supported by the Hong Kong RGC Collaborative Research Fund (CUHK3/CRF/11G), the Lo Kwee-Seong Biomedical Research Fund and Lee Hysan Foundation. K.-M. Fung, Q. Wang and L. K.-W. Siu of The Chinese University of Hong Kong assisted in the production of Fig. 3, Table 1 and the associated webpage (http://legumecrops.wildsoydb.org/). We thank H. Upadhyaya for the images shown in Fig. 4. T.A.M. and J.M.H. thank the Western Australian Government, Department of Industry and Resources for financial support. The authors thank Bodhi's Bakery, Fremantle, Western Australia, for baking the bread and biscuits and Belmar Foods, Balcatta, Western Australia, for manufacturing and providing the pasta. B.N.K., H.B. and T.D.C. are supported by the Australian Research Council (ARC), ITRH—Legumes for Sustainable Agriculture (IH140100013). M.J.C. and C.H.F. thank the ARC (DP150103211) for financial support. A.J.M. is supported by grant funding (BB/JJ004553/1 and BB/L010305/1) from the BBSRC and the John Innes Foundation.

Author information

Affiliations

Authors

Contributions

C.H.F. co-created the network, discussed the idea, organized the content, wrote the abstract, introduction and ‘Conclusions and perspectives’ sections, and edited the final article before submission. H.-M.L. discussed and contributed to the content, prepared Fig. 3, Table 1 and the associated webpage (http://legumecrops.wildsoydb.org/). R.V. provided information concerning genetics and breeding. H.T.N. discussed and contributed to the content and coordinated the genetic and breeding topics including the figures and Table 1. K.H.M.S. co-created the network, discussed the idea, contributed to various sections and figures, and edited the final version. T.D.C. discussed the content, contributed to the section on sustainable agriculture, contributed edits to several sections, and gave suggestions on figures. W.A.C. wrote parts of the text, contributed citations and edited Table 1 and figures. H.B. discussed the content, prepared Fig. 1 and Fig. 2, and contributed to the section ‘Sustainable agriculture’. T.A.M. discussed the idea and contributed to the section ‘Nutrition and health’. J.M.H. contributed to the section ‘Nutrition and health’. J.W.C. produced Fig. 4 and finalized the references. A.J.M. contributed to the section ‘Symbiotic nitrogen fixation’. K.K. and J.V. contributed to the section ‘Bringing in orphans’. C.C. organized the section ‘Bringing in orphans’ and reviewed the final version of the section. J.A.O. discussed the idea and provided information for the section ‘Nutrition and health’. M.L.W. contributed to the section ‘Nutrition and health’. Y.L. discussed the idea and contributed to the section ‘Sustainable agriculture’. H.S., K.S. and J.Y. discussed the idea and helped to edit the content before submission. N.F. contributed to the section ‘Mitigating climate change’. B.N.K. contributed to sections focussed on legume nitrogen fixation and helped to edit the content before submission. F.-L.W. produced Table 1 and the associated webpage (http://legumecrops.wildsoydb.org/). B.V. contributed to the section and citations on abiotic stress, and Fig. 6. M.C. co-created the network, prepared Box 1, discussed the idea and edited the figures before submission.

Corresponding author

Correspondence to Christine H. Foyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foyer, C., Lam, H., Nguyen, H. et al. Neglecting legumes has compromised human health and sustainable food production. Nature Plants 2, 16112 (2016). https://doi.org/10.1038/nplants.2016.112

Download citation

Further reading