Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system


To reduce crop losses due to geminivirus infection, we targeted the bean yellow dwarf virus (BeYDV) genome for destruction with the CRISPR–Cas (clustered, regularly interspaced short palindromic repeats–CRISPR-associated proteins) system. Transient assays using BeYDV-based replicons revealed that CRISPR–Cas reagents introduced mutations within the viral genome and reduced virus copy number. Transgenic plants expressing CRISPR–Cas reagents and challenged with BeYDV had reduced virus load and symptoms, thereby demonstrating a novel strategy for engineering resistance to geminiviruses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Testing Cas9-sgRNA activity at targets within the BeYDV.
Figure 2: Restricting BeYDV infection with the CRISPR–Cas system.


  1. 1

    Mansoor, S., Zafar, Y. & Briddon, R. W. Geminivirus disease complexes: the threat is spreading. Trends Plant Sci. 11, 209–212 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Hanley-Bowdoin, L., Bejarano, E. R., Robertson, D. & Mansoor, S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Rev. Microbiol. 11, 777–788 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Pilartz, M. & Jeske, H. Abutilon mosaic geminivirus double-stranded DNA is packed into minichromosomes. Virology 189, 800–802 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Aragao, F. J. L. & Faria, J. C. First transgenic geminivirus-resistant plant in the field. Nature Biotechnol. 27, 1086–1088 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Yang, C.-F. et al. Generation of marker-free transgenic plants concurrently resistant to a DNA geminivirus and a RNA tospovirus. Sci. Rep. 4, 5717 (2014).

    Article  Google Scholar 

  6. 6

    Westra, E. R., Buckling, A. & Fineran, P. C. CRISPR-Cas systems: beyond adaptive immunity. Nature Rev. Microbiol. 12, 317–326 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Halley-Stott, R. P., Tanzer, F., Martin, D. P. & Rybicki, E. P. The complete nucleotide sequence of a mild strain of Bean yellow dwarf virus. Arch. Virol. 152, 1237–1240 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Li, J.-F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnol. 31, 688–691 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Stenger, D. C., Revington, G. N., Stevenson, M. C. & Bisaro, D. M. Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA. Proc. Natl Acad. Sci. USA 88, 8029–8033 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Kearse, M. et al. Geneious Basic: An integrated and extendable 531 desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  Google Scholar 

  13. 13

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A. & Voytas, D. F. DNA replicons for plant genome engineering. Plant Cell 26, 151–163 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Liu, D. et al. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS ONE 7, e46451 (2012).

    CAS  Article  Google Scholar 

Download references


We thank K. Leffler for the help in generating the figures. We thank J. Gil for technical assistance with the qPCR experiment. This work was supported by a grant from the National Science Foundation (IOS-1339209).

Author information




N.J.B. and A.W.H. designed the experiments, with input from D.F.V. N.J.B, A.W.H. and E.K. generated constructs. N.J.B., A.W.H. and E.K. performed the transient assays. E.K. provided technical support. R.C. analysed the NGS data. A.N.B. and D.M.B. helped design the infection experiments; E.K. and A.B. performed the experiments. N.J.B., A.W.H. and D.F.V. wrote the paper. D.F.V. supervised the entire project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniel F. Voytas.

Ethics declarations

Competing interests

N.J.B., A.W.H. and D.F.V. are inventors on a patent application (WO2015048707A2) for the technology described in this work.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baltes, N., Hummel, A., Konecna, E. et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants 1, 15145 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing