Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolved-sideband cooling of a micromechanical oscillator

Abstract

In atomic laser cooling, preparation of the motional quantum ground state has been achieved using resolved-sideband cooling of trapped ions. Here, we report the first demonstration of resolved-sideband cooling of a mesoscopic mechanical oscillator, a key step towards ground-state cooling as quantum back-action is sufficiently suppressed in this scheme. A laser drives the first lower sideband of an optical microcavity resonance, the decay rate of which is twenty times smaller than the eigenfrequency of the associated mechanical oscillator. Cooling rates above 1.5 MHz are attained, three orders of magnitude higher than the intrinsic dissipation rate of the mechanical device that is independently monitored at the level. Direct spectroscopy of the motional sidebands of the cooling laser confirms the expected suppression of motional increasing processes during cooling. Moreover, using two-mode pumping, this regime could enable motion measurement beyond the standard quantum limit and the concomitant generation of non-classical states of motion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooling a mechanical oscillator.
Figure 2: Resolved-sideband regime of a mesoscopic optomechanical oscillator.
Figure 3: Schematic diagram of the experiment.
Figure 4: Resolved-sideband cooling of the radial breathing mode.
Figure 5: Motional sideband spectroscopy.

Similar content being viewed by others

References

  1. Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  Google Scholar 

  2. Stenholm, S. The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699–739 (1986).

    Article  ADS  Google Scholar 

  3. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  4. Dehmelt, H. G. Entropy reduction by motional sideband excitation. Nature 262, 777 (1976).

    Article  ADS  Google Scholar 

  5. Wineland, D. & Dehmelt, H. Proposed 1014Δυ<υ laser fluorescence spectroscopy on T1+mono-ion oscillator III. Bull. Am. Phys. Soc. 20, 637–637 (1975).

    Google Scholar 

  6. Neuhauser, W., Hohenstatt, M., Toschek, P. & Dehmelt, H. Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233–236 (1978).

    Article  ADS  Google Scholar 

  7. Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989).

    Article  ADS  Google Scholar 

  8. Monroe, C. et al. Resolved-side-band Raman cooling of a bound atom to the 3d zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  9. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  10. Braginsky, V. B. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, Chicago, 1977).

    Google Scholar 

  11. Arcizet, O. et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  12. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  13. Schliesser, A. et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  14. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  15. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  16. Corbitt, T. et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007).

    Article  ADS  Google Scholar 

  17. Thomson, J. D. et al. Strong dispersive coupling of a high finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  18. Brown, K. R. et al. Passive cooling of a micromechanical oscillator with a resonant electric circuit. Phys. Rev. Lett. 99, 137205 (2007).

    Article  ADS  Google Scholar 

  19. Wilson-Rae, I., Zoller, P. & Imamoglu, A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004).

    Article  ADS  Google Scholar 

  20. Wineland, D. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Standards Technol. 103, 259–328 (1998).

    Article  Google Scholar 

  21. Tian, L. & Zoller, P. Coupled ion-nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004).

    Article  ADS  Google Scholar 

  22. Braginsky, V. B. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, Chicago, 1977).

    Google Scholar 

  23. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Preprint at <http://arXiv:0801.1827> (2008).

  24. Blencowe, M. P. & Buks, E. Quantum analysis of a linear dc SQUID mechanical displacement detector. Phys. Rev. B 76, 014511 (2007).

    Article  ADS  Google Scholar 

  25. Martin, I., Shnirman, A., Tian, L. & Zoller, P. Ground-state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004).

    Article  ADS  Google Scholar 

  26. Blencowe, M. P., Imbers, J. & Armour, A. D. Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor. New J. Phys. 7, 236 (2005).

    Article  ADS  Google Scholar 

  27. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  28. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  29. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  30. Carmon, T. et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

    Article  ADS  Google Scholar 

  31. Kippenberg, T. J. et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  32. Rokhsari, H., Kippenberg, T. J., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293–5301 (2005).

    Article  ADS  Google Scholar 

  33. Ma, R. et al. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Opt. Lett. 32, 2200–2202 (2007).

    Article  ADS  Google Scholar 

  34. Hänsch, T. W. & Couillaud, B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980).

    Article  ADS  Google Scholar 

  35. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  ADS  Google Scholar 

  36. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    Article  ADS  Google Scholar 

  37. Raab, C. et al. Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion. Phys. Rev. Lett. 85, 538–541 (2000).

    Article  ADS  Google Scholar 

  38. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  39. Dorsel, A., McCullen, J. D., Meystre, P., Vignes, E. & Walther, H. Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550–1553 (1983).

    Article  ADS  Google Scholar 

  40. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  41. Mancini, S., Giovannetti, V., Vitali, D. & Tombesi, P. Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 120401 (2002).

    Article  ADS  Google Scholar 

  42. Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett. 85, 1594–1597 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with T. W. Hänsch, W. Zwerger and I. Wilson-Rae. T.J.K. acknowledges support through an Independent Max Planck Junior Research Group Grant, a Marie Curie Excellence Grant (JRG-UHQ), the DFG-funded Nanosystems Initiative Munich (NIM) and a Marie Curie Reintegration Grant (RG-UHQ). The authors gratefully acknowledge J. Kotthaus for access to clean-room facilities for microfabrication and A. Marx for support with scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Kippenberg.

Supplementary information

Supplementary Information

Supplementary Information and Supplementary Figures 1–2 (PDF 1131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schliesser, A., Rivière, R., Anetsberger, G. et al. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys 4, 415–419 (2008). https://doi.org/10.1038/nphys939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing