Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Triplet supercurrents in clean and disordered half-metallic ferromagnets

Abstract

Interfaces between materials with differently ordered phases present unique opportunities to study fundamental problems in physics. One example is the interface between a singlet superconductor and a half-metallic ferromagnet, where Cooper pairing occurs between electrons with opposite spin on the superconducting side, whereas the other exhibits 100% spin polarization. The recent surprising observation of a supercurrent through half-metallic CrO2 therefore requires a mechanism for conversion between unpolarized and completely spin-polarized supercurrents. Here, we suggest a conversion mechanism based on electron spin precession together with triplet-pair rotation at interfaces with broken spin-rotation symmetry. In the diffusive limit (short mean free path), the triplet supercurrent is dominated by inter-related odd-frequency s-wave and even-frequency p-wave pairs. In the crossover to the ballistic limit, further symmetry components become relevant. The interface region exhibits a superconducting state of mixed-spin pairs with highly unusual symmetry properties that open up new perspectives for exotic Josephson devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conversion between singlet and triplet supercurrents.
Figure 2: Spin mixing and broken spin-rotation symmetry around M.
Figure 3: Proximity amplitudes induced at superconductor–ferromagnet interfaces.
Figure 4: Critical Josephson current Jc.
Figure 5: Non-monotonic temperature dependence.
Figure 6: Peak position Tpeak in Jc(T).

Similar content being viewed by others

References

  1. Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244–248 (2006).

    Article  ADS  Google Scholar 

  2. Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 . Nature 439, 825–827 (2006).

    Article  ADS  Google Scholar 

  3. Volkov, A. F., Bergeret, F. S. & Efetov, K. B. Odd triplet superconductivity in superconductor-ferromagnet multilayered structures. Phys. Rev. Lett. 90, 117006 (2003).

    Article  ADS  Google Scholar 

  4. Asano, Y., Tanaka, Y. & Golubov, A. A. Josephson effect due to odd-frequency pairs in diffusive half metals. Phys. Rev. Lett. 98, 107002 (2007).

    Article  ADS  Google Scholar 

  5. Eschrig, M., Kopu, J., Cuevas, J. C. & Schön, G. Theory of half-metal/superconductor heterostructures. Phys. Rev. Lett. 90, 137003 (2003).

    Article  ADS  Google Scholar 

  6. Tanaka, Y. & Golubov, A. A. Theory of the proximity effect in junctions with unconventional superconductors. Phys. Rev. Lett. 98, 037003 (2007).

    Article  ADS  Google Scholar 

  7. Eschrig, M. et al. Symmetries of pairing correlations in superconductor-ferromagnet nanostructures. J. Low Temp. Phys. 147, 457–476 (2007).

    Article  ADS  Google Scholar 

  8. Tokuyasu, T., Sauls, J. A. & Rainer, D. Proximity effect of a ferromagnetic insulator in contact with a superconductor. Phys. Rev. B 38, 8823–8833 (1988).

    Article  ADS  Google Scholar 

  9. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    Article  ADS  Google Scholar 

  10. Kopu, J., Eschrig, M., Cuevas, J. C. & Fogelström, M. Transfer-matrix description of heterostructures involving superconductors and ferromagnets. Phys. Rev. B 69, 094501 (2004).

    Article  ADS  Google Scholar 

  11. Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959).

    Article  ADS  Google Scholar 

  12. Abrikosov, A. A. & Gor’kov, L. P. Superconducting alloys at finite temperatures. Zh. Eksp. Teor. Fiz. 36, 319–320 (1959); Sov. Phys. JETP 9, 220–221 (1959).

  13. Braude, V. & Nazarov, Yu. V. Fully developed triplet proximity effect. Phys. Rev. Lett. 98, 077003 (2007).

    Article  ADS  Google Scholar 

  14. Buzdin, A. I., Bulaevskii, L. N. & Panyukov, S. V. Critical-current oscillations as a function of the exchange field and thickness of the ferromagnetic metal (F) in an S–F–S Josephson junction. Pis’ma Zh. Eksp. Teor. Fiz. 35, 147–148 (1982); Sov. Phys. JETP Lett. 35, 178–180 (1982).

  15. Larkin, A. I. Vector pairing in superconductors of small dimensions. Pis’ma Zh. Eksp. Teor. Fiz. 2, 205–209 (1965); Sov. Phys. JETP Lett. 2, 130–133 (1965).

  16. Lewis, S. P., Allen, P. B. & Sasaki, T. Band structure and transport properties of CrO2 . Phys. Rev. B 55, 10253–10260 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Kopu and G. Schön for important contributions, A. Posazhennikova for comments on the manuscript, U. Rüdiger for discussions on interface properties of ferromagnets, and R. Keizer and T. Klapwijk for communications in relation to ref. 2. T.L. acknowledges financial support from the Alexander von Humboldt Foundation. M.E. acknowledges the hospitality of the Aspen Center for Physics.

Author information

Authors and Affiliations

Authors

Contributions

M.E. and T.L. shared equal responsibility for all aspects of this project.

Corresponding authors

Correspondence to Matthias Eschrig or Tomas Löfwander.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Fig 1 and Fig 2 (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschrig, M., Löfwander, T. Triplet supercurrents in clean and disordered half-metallic ferromagnets. Nature Phys 4, 138–143 (2008). https://doi.org/10.1038/nphys831

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing