Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dispersionless slow light using gap solitons

Abstract

The ability to slow down and delay optical pulses is an intriguing physical phenomenon with significant applications, such as in telecommunications. It is essential for these applications that the phenomenon has enough bandwidth, so that it can respond sufficiently fast to the very short light pulses that will carry the information in future telecommunications systems. However, typical slow-light systems exhibit dispersion, which distorts the pulses on propagation, leading to loss of information, thereby limiting the bandwidth. This limitation imposes a trade-off between the acquired delay and the system’s bandwidth. By introducing nonlinearity, however, the pulse can travel slowly and also remain undistorted over arbitrarily long propagation lengths by the formation of a soliton. We observe such solitons in a fibre Bragg grating, and show that subnanosecond pulses travel at 16% of the speed of light, without broadening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission spectrum of the 10 cm apodized FBG.
Figure 2: Schematic diagram of the experimental setup.
Figure 3: Nonlinear transmission.
Figure 4: Pulse and delay measurements.
Figure 5: Tunable delay with power or strain.
Figure 6: What to expect if longer FBGs are used.
Figure 7: Comparison of pulse quality between nonlinear and linear FBGs.

Similar content being viewed by others

References

  1. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metre per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  2. Palinginis, P., Sedgwick, F., Crankshaw, S., Moewe, M. & Chang-Hasnain, C. J. Room temperature slow light in a quantum-well waveguide via coherent population oscillation. Opt. Express 13, 9909–9915 (2005).

    Article  ADS  Google Scholar 

  3. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    Article  ADS  Google Scholar 

  4. Song, K. Y., Herráez, M. G. & Thévenaz, L. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express 13, 82–88 (2005).

    Article  ADS  Google Scholar 

  5. Longhi, S. et al. Optical buffering in phase-shifted fibre gratings. Electron. Lett. 41, 1075–1077 (2005).

    Article  Google Scholar 

  6. Mok, J. T., Littler, I. C. M. & Eggleton, B. J. OSA Topical Meeting on Bragg Grating, Poling and Photosensitivity (BGPP) Sydney (2005).

    Google Scholar 

  7. Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. & Jackson, D. J. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron. 40, 726–730 (2004).

    Article  ADS  Google Scholar 

  8. Poon, J. K. S., Zhu, L., DeRose, G. A. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).

    Article  ADS  Google Scholar 

  9. Letartre, X. et al. Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes. Appl. Phys. Lett. 79, 2312–2314 (2001).

    Article  ADS  Google Scholar 

  10. Mori, D. & Baba, T. Dispersion-controlled optical group delay device by chirped photonic crystal waveguides. Appl. Phys. Lett. 85, 1101–1103 (2004).

    Article  ADS  Google Scholar 

  11. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    Article  ADS  Google Scholar 

  12. Vlasov, Y. A., O’Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  13. Altug, H. & Vuckovic, J. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Appl. Phys. Lett. 86, 111102 (2005).

    Article  ADS  Google Scholar 

  14. Boyd, R. & Gauthier, D. in Prog. in Optics Vol 43 (ed. Wolf, E.) 497–530 (Elsevier, Amsterdam, 2002).

    Google Scholar 

  15. Lenz, G., Eggleton, B. J., Madsen, C. K. & Slusher, R. E. Optical delay lines based on optical filters. J. Quantum Electron. 37, 525–530 (2001).

    Article  ADS  Google Scholar 

  16. Yanik, M. F. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

    Article  ADS  Google Scholar 

  17. Boyd, R. W., Gauthier, D. J., Gaeta, A. L. & Willner, A. E. Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A 71, 02381 (2005).

    Article  Google Scholar 

  18. Povinelli, M. L., Johnson, S. G. & Joannopoulos, J. D. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 13, 7145–7159 (2005).

    Article  ADS  Google Scholar 

  19. Khurgin, J. B. Expanding the bandwidth of slow-light photonic devices based on coupled resonators. Opt. Lett. 30, 513–515 (2005).

    Article  ADS  Google Scholar 

  20. Sandhu, S., Povinelli, M. L., Yanik, M. F. & Fan, S. Dynamically tuned coupled-resonator delay lines can be nearly dispersion free. Opt. Lett. 31, 1985–1987 (2006).

    Article  ADS  Google Scholar 

  21. Mok, J. T. & Eggleton, B. J. Expect more delays. Nature 433, 811–812 (2005).

    Article  ADS  Google Scholar 

  22. Kashyap, R. Fiber Bragg Gratings (Academic, San Diego, California, 1999).

    Google Scholar 

  23. de Sterke, C. M. & Sipe, J. E. in Prog. in Optics Vol 33 (ed. Wolf, E.) 203–259 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  24. Russell, P. S. J. Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures. J. Mod. Opt. 38, 1599–1619 (1991).

    Article  ADS  Google Scholar 

  25. Christodoulides, D. N. & Joseph, R. I. Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62, 1746–1749 (1989).

    Article  ADS  Google Scholar 

  26. Aceves, A. & Wabnitz, S. Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A 141, 37–42 (1989).

    Article  ADS  Google Scholar 

  27. Chen, W. & Mills, D. Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 58, 160–163 (1987).

    Article  ADS  Google Scholar 

  28. Eggleton, B. J., Slusher, R. E., de Sterke, C. M., Krug, P. A. & Sipe, J. E. Bragg grating solitons. Phys. Rev. Lett. 76, 1627–1630 (1996).

    Article  ADS  Google Scholar 

  29. Eggleton, B. J., de Sterke, C. M. & Slusher, R. E. Bragg solitons in the nonlinear schrodinger limit: Experiment and theory. J. Opt. Soc. Am. B 16, 587–599 (1999).

    Article  ADS  Google Scholar 

  30. Taverner, D., Broderick, N. G. R., Richardson, D. J., Laming, R. I. & Ibsen, M. Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. Opt. Lett. 23, 328–330 (1998).

    Article  ADS  Google Scholar 

  31. Mok, J. T., Littler, I. C. M., Tsoy, E. & Eggleton, B. J. Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings. Opt. Lett. 30, 2457–2459 (2005).

    Article  ADS  Google Scholar 

  32. Khurgin, J. B. Light slowing down in Moiré fiber gratings and its implications for nonlinear optics. Phys. Rev. A 62, 013821 (2000).

    Article  ADS  Google Scholar 

  33. Littler, I. C. M., Grujic, T. & Eggleton, B. J. Photo-thermal effects in fiber Bragg gratings. Appl. Opt. 45, 4679–4685 (2006).

    Article  ADS  Google Scholar 

  34. Tucker, R. S., Ku, P.-C. & Chang-Hasnain, C. J. Slow-light optical buffers: Capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005).

    Article  ADS  Google Scholar 

  35. Durkin, M., Ibsen, M., Cole, M. & Laming, R. 1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation. Electron. Lett. 33, 1891–1893 (1997).

    Article  Google Scholar 

  36. Slusher, R. E. et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B 21, 1146–1155 (2004).

    Article  ADS  Google Scholar 

  37. Shokooh-Saremi, M. et al. High-performance Bragg gratings in chalcogenide rib waveguides written with a modified sagnac interferometer. J. Opt. Soc. Am. B 23, 1323–1331 (2006).

    Article  ADS  Google Scholar 

  38. Sukhorukov, A. A. & Kivshar, Y. S. Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides. Preprint at <http://arxiv.org/abs/physics/0605194> (2006).

Download references

Acknowledgements

This work was produced with the assistance of the Australian Research Council under the ARC Centres of Excellence programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe T. Mok.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mok, J., de Sterke, C., Littler, I. et al. Dispersionless slow light using gap solitons. Nature Phys 2, 775–780 (2006). https://doi.org/10.1038/nphys438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing