Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ‘strange metal’ is a projected Fermi liquid with edge singularities

Abstract

The first measurements on single-crystalline high-temperature superconductors revealed that the ‘normal’ metal above the superconducting transition temperature, Tc, was as unusual as the superconductor: the large, temperature-dependent resistivity implied a scattering rate not just linear in T but of the order of the average excitation energy kBT/h, where kB is Boltzmann’s constant and h is Planck’s constant. This ‘strange metal’ phase continues to be of much theoretical interest. Here we show it is a consequence of projecting the doubly occupied amplitudes out of a conventional Fermi-sea wavefunction (Gutzwiller projection), requiring no exotica such as a mysterious quantum critical point. Exploiting a formal similarity with the classic problem of Fermi-edge singularities in the X-ray spectra of metals, we find a Fermi-liquid-like excitation spectrum, but the excitations are asymmetric between electrons and holes, show anomalous forward scattering and the renormalization constant Z=0. We explain the power-law frequency dependence of the conductivity, and predict tunnelling spectrum anomalies and the forms of photoelectron spectra.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Idealized tunnelling spectrum dI/dV versus V at T=0 for a Gutzwiller-projected Fermi gas for x≈0.3.
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Anderson, P. W. The Theory of Superconductivity in the High Tc Cuprates Ch. 3 (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  2. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu–O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  Google Scholar 

  3. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004).

    Article  Google Scholar 

  4. Anderson, P. W. & Ong, N. P. Theory of asymmetric tunneling in the cuprate superconductors. J. Phys. Chem. Solids 67, 1–5 (2006).

    Article  ADS  Google Scholar 

  5. Anderson, P. W. Ground state of a magnetic impurity in a metal. Phys. Rev. 164, 352–359 (1967).

    Article  ADS  Google Scholar 

  6. Mahan, G. D. Excitons in metals—Infinite hole mass. Phys. Rev. 163, 612–617 (1967).

    Article  ADS  Google Scholar 

  7. Nozieres, P. & de Domini, C. T. Singularities in X-ray absorption and emission of metals 3. One-body theory exact solution. Phys. Rev. 178, 1097–1107 (1969).

    Article  ADS  Google Scholar 

  8. Anderson, P. W. & Yuval, G. in Magnetism Vol. V (ed. Suhl, H.) 217 (Academic, New York, 1973).

    Book  Google Scholar 

  9. Anderson, P. W. Luttinger-liquid behavior of the normal metallic state of the 2d Hubbard-model. Phys. Rev. Lett. 64, 1839–1841 (1990).

    Article  ADS  Google Scholar 

  10. Doniach, S. & Sunjic, M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C 3, 285–291 (1970).

    Article  ADS  Google Scholar 

  11. Anderson, P. W. & Yuval, G. Exact results in kondo problem—Equivalence to a classical one-dimensional Coulomb gas. Phys. Rev. Lett. 23, 89–92 (1969).

    Article  ADS  Google Scholar 

  12. Anderson, P. W. Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049–1051 (1967).

    Article  ADS  Google Scholar 

  13. Schotte, K. D. & Schotte, U. Tomonaga’s model and threshold singularity of X-ray spectra of metals. Phys. Rev. 182, 479–482 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  14. Anderson, P. W. The ‘strange metal’ is a projected Fermi liquid with edge singularities. Preprint at <http://arxiv.org/cond-mat/0512471> (2006).

  15. Ogata, M. & Anderson, P. W. Transport-properties in the Tomonaga-Luttinger liquid. Phys. Rev. Lett. 70, 3087–3090 (1993).

    Article  ADS  Google Scholar 

  16. Anderson, P. W. Infrared conductivity of cuprate metals: Detailed fit using Luttinger-liquid theory. Phys. Rev. B 55, 11785–11788 (1997).

    Article  ADS  Google Scholar 

  17. Anderson, P. W. The Theory of Superconductivity in the High Tc Cuprates Ch. 6, Part 3, and Supplemental Material F and M (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  18. Schlesinger, Z. et al. Superconducting energy-gap and normal-state conductivity of a single-domain YBa2Cu3O7 crystal. Phys. Rev. Lett. 65, 801–804 (1990).

    Article  ADS  Google Scholar 

  19. El Azrak, A. et al. Optical conductivity and carrier relaxation rate in the normal-state of high-T(C) thin-films. J. Alloys Compounds 195, 663–666 (1993).

    Article  Google Scholar 

  20. van der Marel, D. et al. Quantum critical behaviour in a high-Tc superconductor. Nature 425, 271–274 (2003).

    Article  ADS  Google Scholar 

  21. Gurvitch, M. et al. Reproducible tunneling data on chemically etched single-crystals of YBa2Cu3O7 . Phys. Rev. Lett. 63, 1008–1011 (1989).

    Article  ADS  Google Scholar 

  22. Fournel, A. et al. Gaplessness evidence in superconductive YBa2Cu3O7 shown by tunneling effect. Physica C 153, 1399–1400 (1988).

    Article  ADS  Google Scholar 

  23. Imer, J. M. et al. High-resolution photoemission-study of the low-energy excitations reflecting the superconducting state of Bi–Sr–Ca–Cu–O single-crystals. Phys. Rev. Lett. 62, 336–339 (1989).

    Article  ADS  Google Scholar 

  24. Steglich, F. in More is Different (eds Bhatt, R. & Ong, N. P.) (Princeton Univ. Press, Princeton, 2001).

    Google Scholar 

  25. Norman, M. R. & Chubukov, A. V. High-frequency behavior of the infrared conductivity of cuprates. Phys. Rev. B 73, 140501 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Z. Schlesinger, T. Timusk and especially N. Bontemps and D. van der Marel for extensive discussions of their data over the decades; and V. Muthukumar, E. Abrahams, M. Randeria and M. Norman for lengthy discussions of theoretical points over a number of years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Anderson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, P. The ‘strange metal’ is a projected Fermi liquid with edge singularities. Nature Phys 2, 626–630 (2006). https://doi.org/10.1038/nphys388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing