Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anomalous enhancement of the Nernst effect at the crossover between a Fermi liquid and a strange metal

Abstract

A strange-metal state appears in many strongly correlated materials, so understanding its nature is a crucial problem in condensed matter physics. This knowledge could provide important insight into high-temperature superconductivity and quantum criticality, but standard Fermi-liquid theory fails in strange metals. Establishing an alternative theory has been a long-standing challenge and fundamental aspects of strange metals—including the nature of their charge carriers—remain elusive. Here we report the observation of a large Nernst response in the strange-metal state in a two-dimensional superconductor 2M-WS2. Specifically, when the system enters the strange-metal state from the Fermi-liquid state, the Nernst coefficient increases to be comparable to the vortex Nernst signal in superconducting cuprates, and it is highly sensitive to carrier mobility. The temperature and magnetic field dependence of the Nernst peak rule out the relevance of both Landau quasiparticles and superconductivity. Instead, the Nernst peak at the crossover indicates a change in carrier entropy when entering the strange-metal state. The presence of such an anomalous Nernst response is further confirmed in other iconic strange metals, suggesting its universality and places experimental constraints on the mechanism of strange metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Fermi-liquid, strange-metal and bad-metal regimes in 2M-WS2.
Fig. 2: The thermoelectric responses in 2M-WS2.
Fig. 3: The Nernst coefficient in 2M-WS2 shows an anomalous enhancement compared with that expected in a Fermi liquid.
Fig. 4: The presence of an anomalous Nernst response is confirmed in other strange metals, suggesting its universality.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Landau, L. D. & Pomeranschuk, I. Y. On properties of metals at very low energies. J. Exp. Theor. Phys. 7, 379–385 (1937).

    Google Scholar 

  2. Baber, W. G. & Mott, N. F. The contribution to the electrical resistance of metals from collisions between electrons. Proc. R. Soc. A 158, 383–396 (1937).

  3. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    Article  ADS  Google Scholar 

  4. Greene, R. L., Mandal, P. R., Poniatowski, N. R. & Sarkar, T. The strange metal state of the electron-doped cuprates. Annu. Rev. Condens. Matter Phys. 11, 213–229 (2020).

    Article  ADS  Google Scholar 

  5. Yuan, J. et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 602, 431–436 (2022).

    Article  ADS  Google Scholar 

  6. Abdel-Jawad, M. et al. Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat. Phys. 2, 821–825 (2006).

    Article  Google Scholar 

  7. Husain, A. A. et al. Coexisting Fermi liquid and strange metal phenomena in Sr2RuO4. Preprint at arXiv:2007.06670 (2020).

  8. Hussey, N. E. et al. Normal-state magnetoresistance of Sr2RuO4. Phys. Rev. B 57, 5505–5511 (1998).

  9. Hayes, I. M. et al. Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2. Nat. Phys. 12, 916–919 (2016).

    Article  Google Scholar 

  10. Čulo, M. et al. Putative Hall response of the strange metal component in FeSe1-xSx. Phys. Rev. Res. 3, 023069 (2021).

    Article  Google Scholar 

  11. Shen, B. et al. Strange-metal behaviour in a pure ferromagnetic Kondo lattice. Nature 579, 51–55 (2020).

    Article  ADS  Google Scholar 

  12. Prochaska, L. et al. Singular charge fluctuations at a magnetic quantum critical point. Science 367, 285–288 (2020).

    Article  ADS  Google Scholar 

  13. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article  ADS  Google Scholar 

  14. Yang, C. et al. Signatures of a strange metal in a bosonic system. Nature 601, 205–210 (2022).

    Article  ADS  Google Scholar 

  15. Hartnoll, S. A. Theory of universal incoherent metallic transport. Nat. Phys. 11, 54–61 (2015).

    Article  Google Scholar 

  16. Patel, A. A. & Sachdev, S. Theory of a Planckian metal. Phys. Rev. Lett. 123, 066601 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  17. Faulkner, T., Iqbal, N., Liu, H., McGreevy, J. & Vegh, D. Strange metal transport realized by gauge/gravity duality. Science 329, 1043–1047 (2010).

    Article  ADS  Google Scholar 

  18. Ayres, J. et al. Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 595, 661–666 (2021).

    Article  ADS  Google Scholar 

  19. Deng, X. et al. How bad metals turn good: spectroscopic signatures of resilient quasiparticles. Phys. Rev. Lett. 110, 086401 (2013).

    Article  ADS  Google Scholar 

  20. Xu, W., Haule, K. & Kotliar, G. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective. Phys. Rev. Lett. 111, 036401 (2013).

    Article  ADS  Google Scholar 

  21. Behnia, K. & Aubin, H. Nernst effect in metals and superconductors: a review of concepts and experiments. Rep. Prog. Phys. 79, 046502 (2016).

    Article  ADS  Google Scholar 

  22. Behnia, K. The Nernst effect and the boundaries of the Fermi liquid picture. J. Phys. Condens. Matter 21, 113101 (2009).

    Article  ADS  Google Scholar 

  23. Xu, Z. A., Ong, N. P., Wang, Y., Kakeshita, T. & Uchida, S. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4. Nature 406, 486–488 (2000).

    Article  ADS  Google Scholar 

  24. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-Tc superconductors. Phys. Rev. B 73, 024510 (2006).

  25. Cyr-Choinière, O. et al. Enhancement of the Nernst effect by stripe order in a high-Tc superconductor. Nature 458, 743–745 (2009).

    Article  ADS  Google Scholar 

  26. Fang, Y. Q. et al. Discovery of superconductivity in 2M WS2 with possible topological surface states. Adv. Mater. 31, 1901942 (2019).

    Article  Google Scholar 

  27. Li, Y. W. et al. Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2. Nat. Commun. 12, 2874 (2021).

    Article  ADS  Google Scholar 

  28. Yuan, Y. H. et al. Evidence of anisotropic Majorana bound states in 2M-WS2. Nat. Phys. 15, 1046–1051 (2019).

    Article  Google Scholar 

  29. Chien, T. R., Wang, Z. Z. & Ong, N. P. Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3-xZnxO7-δ. Phys. Rev. Lett. 67, 2088–2091 (1991).

    Article  ADS  Google Scholar 

  30. Ando, Y., Kurita, Y., Komiya, S., Ono, S. & Segawa, K. Evolution of the Hall coefficient and the peculiar electronic structure of the cuprate superconductors. Phys. Rev. Lett. 92, 197001 (2004).

    Article  ADS  Google Scholar 

  31. Coleman, P., Schofield, A. J. & Tsvelik, A. M. How should we interpret the two transport relaxation times in the cuprates? J. Phys. Condens. Matter 8, 9985–10015 (1996).

    Article  ADS  Google Scholar 

  32. Anderson, P. W. Hall effect in the two-dimensional Luttinger liquid. Phys. Rev. Lett. 67, 2092–2094 (1991).

    Article  ADS  Google Scholar 

  33. Ding, W., Žitko, R. & Shastry, B. S. Strange metal from Gutzwiller correlations in infinite dimensions: transverse transport, optical response, and rise of two relaxation rates. Phys. Rev. B 96, 115153 (2017).

  34. Shastry, B. S. & Perepelitsky, E. Low-energy physics of the tJ model in d= ∞ using extremely correlated Fermi liquid theory: cutoff second-order equations. Phys. Rev. B 94, 045138 (2016).

  35. Perepelitsky, E. et al. Transport and optical conductivity in the Hubbard model: a high-temperature expansion perspective. Phys. Rev. B 94, 235115 (2016).

  36. Ding, W., Žitko, R., Mai, P., Perepelitsky, E. & Shastry, B. S. Strange metal from Gutzwiller correlations in infinite dimensions. Phys. Rev. B 96, 054114 (2017).

  37. Shastry, B. S. & Mai, P. Aspects of the normal state resistivity of cuprate superconductors. Phys. Rev. B 101, 115121 (2020)..

  38. Behnia, K. Fundamentals of Thermoelectricity (Oxford Univ. Press, 2014).

  39. Sondheimer, E. H. & Wilson, A. H. The theory of the galvanomagnetic and thermomagnetic effects in metals. Proc. R. Soc. A 193, 484–512 (1948).

  40. Wang, Y. et al. Onset of the vortexlike Nernst signal above Tc in La2-xSrxCuO4 and Bi2Sr2-yLayCuO6. Phys. Rev. B 64, 224519 (2001).

  41. Xu, X. F. et al. Band-dependent normal-state coherence in Sr2RuO4: evidence from Nernst effect and thermopower measurements. Phys. Rev. Lett. 101, 057002 (2008).

    Article  ADS  Google Scholar 

  42. Hohenadler, M. & Assaad, F. F. Fractionalized metal in a Falicov-Kimball model. Phys. Rev. Lett. 121, 086601 (2018).

    Article  ADS  Google Scholar 

  43. Gourgout, A. et al. Seebeck coefficient in a cuprate superconductor: particle-hole asymmetry in the strange metal phase and Fermi surface transformation in the pseudogap phase. Phys. Rev. X 12, 011037 (2022).

    Google Scholar 

  44. Mao, Z. Q., Mori, Y. & Maeno, Y. Suppression of superconductivity in Sr2RuO4 caused by defects. Phys. Rev. B 60, 610–614 (1999).

Download references

Acknowledgements

We acknowledge useful discussions with T. Leggett, B. S. Shastry, X. Lin, Y. Liu, H. Zhang and H. Zeng. This work was supported by the National Key Projects for Research & Development of China (grant no. 2019YFA0308602 to H.X. and Z.-A.X.), National Natural Science Foundation of China (grant nos. 11804220 to H.X., 12174334 to Z.-A.X. and 52103353 to Y.F.), Natural Science Foundation of Shanghai (grant no. 20ZR1428900 to H.X.) and the Key Research & Development Program of Zhejiang Province, China (grant no. 2021C01002 to Z.-A.X.).

Author information

Authors and Affiliations

Authors

Contributions

H.X. conceived the project. H.X. and Z.-A.X. supervised the experiments. Y.Y. and H.X. performed the electron transport and thermoelectric transport measurements with assistance from G.T., C.Y., X.Y., Q.T., C.J., X.X. and Z.-A.X. Y.F. and F.H. grew and characterized the 2M-WS2 single crystals. Y.W. and Z.M. grew and characterized the Sr2RuO4 single crystals. W.D. provided theoretical support. H.X. wrote the manuscript with input from all of the coauthors.

Corresponding authors

Correspondence to Fuqiang Huang, Hui Xing or Zhu-An Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Peizhi Mai, Kamran Behnia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Discussion.

Source data

Source Data Fig. 1

Electron transport measurement source data for Fig. 1.

Source Data Fig. 2

Thermoelectric transport measurement source data for Fig. 2.

Source Data Fig. 3

Thermoelectric transport measurement source data for Fig. 3.

Source Data Fig. 4

Electron transport and thermoelectric transport measurement source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Tao, Q., Fang, Y. et al. Anomalous enhancement of the Nernst effect at the crossover between a Fermi liquid and a strange metal. Nat. Phys. 19, 379–385 (2023). https://doi.org/10.1038/s41567-022-01904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01904-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing