Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Collapse of superconductivity in a hybrid tin–graphene Josephson junction array

Abstract

For a Josephson junction array with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to occur on increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study such phase transitions between ground states. Here, we show that decorating graphene with a sparse and regular array of superconducting discs enables the continuous gate-tuning of the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the discs. Under perpendicular magnetic fields, the competition between quantum fluctuations and disorder is responsible for the resilience of superconductivity at the lowest temperatures, supporting a glassy state that persists above the upper critical field. We provide the entire phase diagram of the disorder and magnetic-field-tuned transition to reveal the role of quantum phase fluctuations in 2D superconducting systems.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Proximity-coupled array of superconducting discs on graphene.
Figure 2: Collapse of superconductivity in the proximity-coupled array.
Figure 3: Critical current in the proximity-coupled array at 0.06 K.
Figure 4: Re-entrant superconductivity under a magnetic field.
Figure 5: Phase diagram of the superconductor-to-metal transition.

References

  1. Goldman, A. M. & Marcović, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (November 1998).

    Article  Google Scholar 

  2. Dobrosavljevic, V., Trivedi, N. & Valles Jr, J. M. Conductor–Insulator Quantum Phase Transitions (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  3. Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40, 182–196 (1989).

    ADS  Article  Google Scholar 

  4. Allain, A., Han, Z. & Bouchiat, V. Electrical control of the superconducting-to-insulating transition in graphene-metal hybrids. Nature Mater. 11, 590–594 (2012).

    ADS  Article  Google Scholar 

  5. Ephron, D., Yazdani, A., Kapitulnik, A. & Beasley, M. R. Observation of quantum dissipation in the vortex state of a highly disordered superconducting thin film. Phys. Rev. Lett. 76, 1529–1532 (1996).

    ADS  Article  Google Scholar 

  6. Mason, N. & Kapitulnik, A. Dissipation effects on the superconductor–insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999).

    ADS  Article  Google Scholar 

  7. Mason, N. & Kapitulnik, A. Superconductor–insulator transition in a capacitively coupled dissipative environment. Phys. Rev. B 65, 220505(R) (2002).

    ADS  Article  Google Scholar 

  8. Qin, Y., Vicente, C. L. & Yoon, J. Magnetically induced metallic phase in superconducting tantalum films. Phys. Rev. B 73, 100505(R) (2006).

    ADS  Article  Google Scholar 

  9. Aubin, H. et al. Magnetic-field-induced quantum superconductor–insulator transition in Nb0.15Si0.85 . Phys. Rev. B 73, 094521 (2006).

    ADS  Article  Google Scholar 

  10. Lin, Y-H., Nelson, J. & Goldman, A. M. Suppression of the Berezinskii–Kosterlitz–Thouless transition in 2D superconductors by macroscopic quantum tunneling. Phys. Rev. Lett. 109, 017002 (2012).

    ADS  Article  Google Scholar 

  11. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    ADS  Article  Google Scholar 

  12. Biscaras, J. et al. Multiple quantum criticality in a two-dimensional superconductor. Nature Mater. 12, 542–548 (2013).

    ADS  Article  Google Scholar 

  13. Van der Zant, H. S. J., Fritschy, F. C., Elion, W. J., Geerligs, L. J. & Mooij, J. E. Field-induced superconductor-to-insulator transitions in Josephson-junction arrays. Phys. Rev. Lett. 69, 2971–2974 (1992).

    ADS  Article  Google Scholar 

  14. Van der Zant, H. S. J., Elion, W. J., Geerligs, L. J. & Mooij, J. E. Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays. Phys. Rev. B 54, 10081–10093 (1996).

    ADS  Article  Google Scholar 

  15. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    ADS  Article  Google Scholar 

  16. Feigel’man, M. V. & Larkin, A. I. Quantum superconductor-metal transition in a 2D proximity coupled array. Chem. Phys. 235, 107–114 (1998).

    Article  Google Scholar 

  17. Feigel’man, M. V., Larkin, A. I. & Skvortsov, M. A. Quantum superconductor–metal transition in a proximity array. Phys. Rev. Lett. 86, 1869–1872 (2001).

    ADS  Article  Google Scholar 

  18. Das, D. & Doniach, S. Existence of a Bose metal at T = 0. Phys. Rev. B 60, 1261–1275 (1999).

    ADS  Article  Google Scholar 

  19. Kapitulnik, A., Mason, N., Kivelson, S.A. & Chakravarty, S. Effects of dissipation on quantum phase transitions. Phys. Rev. B 63, 125322 (2001).

    ADS  Article  Google Scholar 

  20. Spivak, B., Zyuzin, A. & Hruska, M. Quantum superconductor–metal transition. Phys. Rev. B 64, 132502 (2001).

    ADS  Article  Google Scholar 

  21. Phillips, P. & Dalidovitch, D. The elusive Bose metal. Science 302, 243–247 (2003).

    ADS  Article  Google Scholar 

  22. Spivak, B., Oreto, P. & Kivelson, S. A. Theory of quantum metal to superconductor transitions in highly conducting systems. Phys. Rev. B 77, 214523 (2008).

    ADS  Article  Google Scholar 

  23. Feigelman, M. V., Kamenev, A., Larkin, A. I. & Skvortsov, M. A. Weak charge quantization on a superconducting island. Phys. Rev. B 66, 054502 (2002).

    ADS  Article  Google Scholar 

  24. Eley, S., Gopalakrishnan, S., Goldbart, P. M. & Mason, N. Approaching zero-temperature metallic states in mesoscopic superconductor–normal–superconductor arrays. Nature Phys. 8, 59–62 (2012).

    ADS  Article  Google Scholar 

  25. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    ADS  Article  Google Scholar 

  26. De Gennes, P. G. Superconductivity of Metals and Alloys (Addison-Wesley, 1989).

    MATH  Google Scholar 

  27. Spivak, B. & Zhou, F. Mesoscopic effects in disordered superconductors near H c2 . Phys. Rev. Lett. 74, 2800–2003 (1995).

    ADS  Article  Google Scholar 

  28. Galitski, V. M. & Larkin, A. I. Disorder and quantum fluctuations in superconducting films in strong magnetic fields. Phys. Rev. Lett. 87, 087001 (2001).

    ADS  Article  Google Scholar 

  29. Feigel’man, M. V., Skvortsov, M. A. & Tikhonov, K. S. Proximity-induced superconductivity in graphene. Pis’ma v ZhETF 88, 780–784 (2008).

    Google Scholar 

  30. Kessler, B. M., Girit, C. Ö, Zettl, A. & Bouchiat, V. Tunable superconducting phase transition in metal-decorated graphene sheets. Phys. Rev. Lett. 104, 047001 (2010).

    ADS  Article  Google Scholar 

  31. Resnick, D. J., Garland, J. C., Boyd, J. T., Shoemaker, S. & Newrock, R. S. Kosterlitz–Thouless transition in proximity-coupled superconducting arrays. Phys. Rev. Lett. 47, 1542–1545 (1981).

    ADS  Article  Google Scholar 

  32. Abraham, D. W., Lobb, C. J., Tinkham, M. & Klapwijk, T. M. Resistive transition in two-dimensional arrays of superconducting weak links. Phys. Rev. B 26, 5268–5271 (1982).

    ADS  Article  Google Scholar 

  33. Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron–hole asymmetry in grapheme. Phys. Rev. B 78, 121402(R) (2008).

    ADS  Article  Google Scholar 

  34. Berezinskii, V. L. Violation of long range order in one-dimensional and two-dimensional systems with a continuous symmetry group: I Classical systems. Zh. Eksp. Teor. Fiz. 59, 907–920 (1970).

    Google Scholar 

  35. Kosterlitz, J. M. & Thouless, D. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    ADS  Article  Google Scholar 

  36. Aslamazov, L. G. & Larkin, A. I. Effect of fluctuations on the properties of a superconductor above the critical temperature. Fiz. Tv. Tela 10, 1104–1111 (1968).

    Google Scholar 

  37. Maki, K. Critical fluctuation of the order parameter in a superconductor. Progr. Theor. Phys. 40, 193–200 (1968).

    ADS  Article  Google Scholar 

  38. Thompson, R. S. Microwave, flux flow, and fluctuation resistance of dirty Type-II superconductors. Phys. Rev. B 1, 327–333 (1970).

    ADS  Article  Google Scholar 

  39. Al’tshuler, B. L. & Spivak, B. Z. Mesoscopic fluctuations in a superconductor-normal metal-superconductor junction. Zh. Eksp. Teor. Fiz. 92, 609–615 (1987).

    Google Scholar 

  40. Den Hartog, S. G. et al. Sample-specific conductance fluctuations modulated by the superconducting phase. Phys. Rev. Lett. 76, 4592–4595 (1996).

    ADS  Article  Google Scholar 

  41. Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

    ADS  Article  Google Scholar 

  42. Finkel’shtein, A.M. Superconducting transition temperature in amorphous films. Pisma ZhETF 45, 37–40 (1987).

    ADS  Google Scholar 

  43. Skvortsov, M. A. & Feigel’man, M. V. Superconductivity in disordered thin films: giant mesoscopic fluctuations. Phys. Rev. Lett. 95, 057002 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Samples were fabricated at the NANOFAB facility of the Néel Institute, the technical team of which has been of critical help for this work. We thank D. Shahar for valuable discussions and comments on the manuscript. We thank N. Bendiab, H. Bouchiat, C. Chapelier, J. Coraux, C. O. Girit, B. M. Kessler, L. Marty, A. Reserbat-Plantey and A. Zettl for stimulating discussions. This work is financially supported by ANR-BLANC projects SuperGraph, TRICO and Cleangraph, and DEFI Nano ERC Advanced Grant MolNanoSpin. Z.H. and H.A-T. acknowledge PhD grant support from the Cible program of Région Rhone-Alpes and from Nanosciences Foundation Grenoble respectively. The research of M.F. is partially supported by RFBR grant no 13-02-00963.

Author information

Authors and Affiliations

Authors

Contributions

Z.H., A.A., M.F., B.S. and V.B. conceived and designed the experiments. Z.H., H.A-T. and V.B. performed the experiments. Z.H., B.S., K.T., A.A. and M.F. contributed to the materials/analysis tools. Z.H., B.S., M.F., K.T. and V.B. analysed the data and wrote the paper.

Corresponding author

Correspondence to Vincent Bouchiat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 983 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, Z., Allain, A., Arjmandi-Tash, H. et al. Collapse of superconductivity in a hybrid tin–graphene Josephson junction array. Nature Phys 10, 380–386 (2014). https://doi.org/10.1038/nphys2929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2929

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing