Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of isospin symmetry in collective nuclear structure

Abstract

The nucleus is a unique laboratory in physics — a quantum many-body system comprising two types of fermion, the neutron and proton, differing in charge but otherwise essentially identical in their behaviour. The fact that the strong interaction between these fermions is largely independent of charge results in striking symmetries in nuclei. This neutron–proton exchange invariance is encompassed in the elegant concept and formalism of Wigner’s isotopic spin — or isospin. The impact of isospin symmetry is maximal near the N=Z line where nuclei have equal numbers of neutrons and protons, and studies involving isospin effects have undergone a resurgence in recent years as such nuclei become more readily accessible. In this review we discuss three isospin-related phenomena: the elegant isospin symmetry of excited analogue states in nuclei, the origin of the extra binding for nuclei with equal numbers of neutrons and protons and the exotic phenomenon of neutron–proton pairing. These three topics, all of considerable current interest, demonstrate the power, simplicity and modern relevance of the isospin concept.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Machleidt, R. & Müther, H. Charge symmetry breaking of the nucleon–nucleon interaction: ρ-ω versus nucleon mass splitting. Phys. Rev. C 63, 034005 (2001).

    Article  ADS  Google Scholar 

  2. Heisenberg, W. Structure of atomic nuclei. I. Z. Phys. 77, 1–11 (1932).

    Article  ADS  Google Scholar 

  3. Wigner, E. On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 51, 106–119 (1937).

    Article  ADS  Google Scholar 

  4. Nolen, J. A. & Schiffer, J. P. Coulomb energies. Ann. Rev. Nucl. Sci. 19, 471–526 (1969).

    Article  ADS  Google Scholar 

  5. Auerbach, N. Coulomb effects in nuclear structure. Phys. Rep. 98, 273–341 (1983).

    Article  ADS  Google Scholar 

  6. Wigner, E. P. in Proceedings of the Robert A. Welch Conference on Chemical Research Vol. 1, 67–91 (Robert A. Welch Foundation, Houston, Texas, 1957).

    Google Scholar 

  7. Wilkinson, D. H. A test of the charge independent mass formula for isobaric analogue states of A=24. Phys. Lett. 11, 243–244 (1964).

    Article  ADS  Google Scholar 

  8. Britz, J., Pape, A. & Antony, M. S. Coefficients of the isobaric mass equation and their correlations with various nuclear parameters. At. Data Nucl. Data Tables 69, 125–159 (1998).

    Article  ADS  Google Scholar 

  9. Cameron, J. A. et al. High-spin states in the mirror nuclei 49Cr and 49Mn. Phys. Lett. B 235, 239–244 (1990).

    Article  ADS  Google Scholar 

  10. Cameron, J. A. et al. High-spin gamma spectroscopy of recoil-separated 49Cr,49V, and 46Ti. Phys. Rev. C 44, 1882–1891 (1991).

    Article  ADS  Google Scholar 

  11. Cameron, J. A. et al. Mirror nuclei at high spin in the f7/2 shell. Phys. Lett. B 319, 58–62 (1993).

    Article  ADS  Google Scholar 

  12. Cameron, J. A. et al. Recoil-separated gamma-ray spectroscopy of 47Ti,47V,47Cr,48V, and 48Cr. Phys. Rev. C 49, 1347–1358 (1994).

    Article  ADS  Google Scholar 

  13. O’Leary, C. D. et al. Mirror symmetry up to the band termination in 49Mn and 49Cr. Phys. Rev. Lett. 79, 4349–4352 (1997).

    Article  ADS  Google Scholar 

  14. Bentley, M. A. et al. Mirror and valence symmetries at the centre of the f7/2 shell. Phys. Lett. B 437, 243–248 (1998).

    Article  ADS  Google Scholar 

  15. Ekman, J. et al. The A=51 mirror nuclei 51Fe and 51Mn. Eur. J. Phys. A 9, 13–17 (2000).

    Article  ADS  Google Scholar 

  16. Bentley, M. A. et al. Mirror symmetry at high spin in 51Fe and 51Mn. Phys. Rev. C 62, 051303(R) (2000).

    Article  ADS  Google Scholar 

  17. Williams, S. J. et al. Anomalous Coulomb matrix elements in the f7/2 shell. Phys. Rev. C 68, 011301(R) (2003).

    Article  ADS  Google Scholar 

  18. Bentley, M. A. et al. High-spin spectroscopy of natural and unnatural parity states in the mirror pair 45V/45Ti. Phys. Rev. C 73, 024304 (2006).

    Article  ADS  Google Scholar 

  19. Rudolph, D. et al. High-spin states in the T z=−1/2 nucleus 55Ni. Z. Phys. A 358, 379–380 (1997).

    Article  ADS  Google Scholar 

  20. Ekman, J. et al. Core excited states in A=51 mirror nuclei. Phys. Rev. C 70, 057305 (2004).

    Article  ADS  Google Scholar 

  21. Ekman, J. et al. γ-ray spectroscopy of core-excited states in 51Mn. Phys. Rev. C 70, 014306 (2004).

    Article  ADS  Google Scholar 

  22. Andersson, L.-L. et al. Identification of excited states in 6131Ga30: Mirror nuclei in the upper fp shell. Phys. Rev. C 71, 011303 (2005).

    Article  ADS  Google Scholar 

  23. Andreoiu, C. et al. First identification of excited states in 59Zn. Eur. Phys. J. A 15, 459–462 (2002).

    Article  ADS  Google Scholar 

  24. Ekman, J. et al. Unusual isospin-breaking and isospin-mixing effects in the A=35 mirror nuclei. Phys. Rev. Lett. 92, 132502 (2004).

    Article  ADS  Google Scholar 

  25. Jenkins, D. G. et al. Mirror energy differences in the A=31 mirror nuclei,31S and 31P, and their significance in electromagnetic spin–orbit splitting. Phys. Rev. C 72, 031303(R) (2005).

    Article  ADS  Google Scholar 

  26. Ekman, J., Fahlander, C. & Rudolph, D. Mirror symmetry in the upper fp shell. Mod. Phys. Lett. A 20, 2977–2992 (2005).

    Article  ADS  Google Scholar 

  27. Stephens, F. S. & Simon, R. S. Coriolis effects in the yrast states. Nucl. Phys. A 183, 257–284 (1972).

    Article  ADS  Google Scholar 

  28. Caurier, E., Zuker, A. P., Poves, A. & Martínez-Pinedo, G. Full p f shell model study of A=48 nuclei. Phys. Rev. C 50, 225–236 (1994).

    Article  ADS  Google Scholar 

  29. Martínez-Pinedo, G., Zuker, A. P., Poves, A. & Caurier, E. Full p f shell study of A=47 and A=49 nuclei. Phys. Rev. C 55, 187–205 (1997).

    Article  ADS  Google Scholar 

  30. Zuker, A. P., Lenzi, S. M., Martínez-Pinedo, G. & Poves, A. Isobaric multiplet yrast energies and isospin nonconserving forces. Phys. Rev. Lett. 89, 142502 (2002).

    Article  ADS  Google Scholar 

  31. Gadea, A. et al. Legnaro National Laboratory Annual Report 2003, INFN (REP) 202/2004 (eds Napoli, D. R., D’Este, A., Palmieri, A. & Vomiero, A.) 8 (LNL, 2004).

  32. Lenzi, S. M. et al. Coulomb energy differences in T=1 mirror rotational bands in 50Fe and 50Cr. Phys. Rev. Lett. 87, 122501 (2001).

    Article  ADS  Google Scholar 

  33. von Weizsäcker, C. F. Theory of nuclear masses. Z. Phys. 96, 431–458 (1935).

    Article  Google Scholar 

  34. Bethe, H. A. & Bacher, R. F. Nuclear physics A. Stationary states of nuclei. Rev. Mod. Phys. 8, 82–229 (1936).

    Article  ADS  Google Scholar 

  35. Wigner, E. On the structure of nuclei beyond oxygen. Phys. Rev. 51, 947–958 (1937).

    Article  ADS  Google Scholar 

  36. Möller, P. & Nix, R. Nuclear pairing models. Nucl. Phys. A 536, 20–60 (1992).

    Article  ADS  Google Scholar 

  37. Zhang, J.-Y., Casten, R. F. & Brenner, D. S. Empirical proton–neutron interaction energies. Linearity and saturation phenomena. Phys. Lett. B 227, 1–5 (1989).

    Article  ADS  Google Scholar 

  38. Audi, G., Wapstra, A. H. & Thibault, C. The AME2003 atomic mass evaluation (II). Table, graphs, and references. Nucl. Phys. A 729, 337–676 (2003).

    Article  ADS  Google Scholar 

  39. Satuła, W., Dean, D. J., Gary, J., Mizutori, S. & Nazarewicz, W. On the origin of the Wigner energy. Phys. Lett. B 407, 103–109 (1997).

    Article  ADS  Google Scholar 

  40. Van Isacker, P., Warner, D. D. & Brenner, D. S. Test of Wigner’s spin–isospin symmetry from double binding energy differences. Phys. Rev. Lett. 74, 4607–4610 (1995).

    Article  ADS  Google Scholar 

  41. Bohr, A. & Mottelson, B. R. Nuclear Structure II: Nuclear Deformations (Benjamin, New York, 1975).

    MATH  Google Scholar 

  42. Jänecke, J. in Isospin in Nuclear Physics (ed. Wilkinson, D. H.) 297–387 (North-Holland, Amsterdam, 1969).

    Google Scholar 

  43. Vogel, P. Pairing and symmetry energy in NZ nuclei. Nucl. Phys. A 662, 148–154 (2000).

    Article  ADS  Google Scholar 

  44. Zeldes, N. The physical origin of the Wigner term and its persistence in heavy nuclei. Phys. Lett. B 429, 20–26 (1998).

    Article  ADS  Google Scholar 

  45. Jänecke, J. & O’Donnell, T. W. Isospin inversion and n–p pairing in self-conjugate nuclei A=58–98. Phys. Lett. B 605, 87–94 (2005).

    Article  ADS  Google Scholar 

  46. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957)ibid Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  47. Bohr, A., Mottelson, B. R. & Pines, D. Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state. Phys. Rev. 110, 936–938 (1958).

    Article  ADS  Google Scholar 

  48. Satuła, W. & Wyss, R. Microscopic structure of fundamental excitations in N=Z nuclei. Phys. Rev. Lett. 87, 052504 (2001).

    Article  ADS  Google Scholar 

  49. Frauendorf, S. Symmetries in nuclear structure. Nucl. Phys. A 752, 203c–212c (2005).

    Article  ADS  Google Scholar 

  50. Kerman, A. K. Pairing forces and nuclear collective motion. Ann. Phys. (NY) 12, 300–329 (1961).

    Article  ADS  Google Scholar 

  51. Racah, G. Theory of complex spectra. III. Phys. Rev. 63, 347–382 (1943).

    Article  ADS  Google Scholar 

  52. Garrett, P. E. et al. Observation of 46Cr and testing the isobaric multiplet mass equation at high spin. Phys. Rev. Lett. 87, 132502 (2001).

    Article  ADS  Google Scholar 

  53. Lenzi, S. M. et al. Band termination in the odd–odd N=Z nucleus 46V. Phys. Rev. C 60, 021303(R) (1999).

    Article  ADS  Google Scholar 

  54. O’Leary, C. D. et al. Neutron–proton pairing, Coulomb effects and shape coexistence in odd–odd N=Z46V. Phys. Lett. B 459, 73–80 (1999).

    Article  ADS  Google Scholar 

  55. Svensson, C. E. et al. High-spin states in the odd–odd N=Z nucleus 50Mn. Phys. Rev. C 58, R2621–R2625 (1998).

    Article  ADS  Google Scholar 

  56. O’Leary, C. D. et al. Isovector pairing in odd–odd N=Z50Mn. Phys. Lett. B 525, 49–55 (2002).

    Article  ADS  Google Scholar 

  57. Flowers, B. H. & Szpikowski, S. Quasi-spin in L S coupling. Proc. Phys. Soc. 84, 673–680 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  58. Dobeš, J. & Pittel, S. Boson mappings and four-particle correlations in algebraic neutron–proton pairing models. Phys. Rev. C 57, 688–703 (1998).

    Article  ADS  Google Scholar 

  59. Juillet, O. & Josse, S. Influence of the spin–orbit coupling on nuclear superfluidity along the N=Z line. Eur. Phys. J. A 8, 291–294 (2000).

    Article  ADS  Google Scholar 

  60. Van Isacker, P., Warner, D. D. & Frank, A. Deuteron transfer in N=Z nuclei. Phys. Rev. Lett. 94, 162502 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Bentley or P. Van Isacker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Tribute to Dave Warner Professor Dave Warner passed away suddenly during the preparation of this review. Following a D.Phil at the University of Sussex and periods spent at the Institut Laue-Langevin (France) and Brookhaven National Laboratory (USA), he was Head of the Surface and Nuclear Division at CCLRC Daresbury Laboratory. Dave’s understanding of isospin was instrumental in the development of the studies described in this article and many of the original ideas and insights explained here are due to him. In addition to this work, he was a leading proponent of algebraic and geometric approaches to nuclear modelling and, latterly, of UK involvement in the development of international radioactive nuclear beam facilities. He will be dearly missed as a physicist, colleague and friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, D., Bentley, M. & Isacker, P. The role of isospin symmetry in collective nuclear structure. Nature Phys 2, 311–318 (2006). https://doi.org/10.1038/nphys291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing