Attosecond control of collective electron motion in plasmas


Today, light fields of controlled and measured waveform can be used to guide electron motion in atoms and molecules with attosecond precision. Here, we demonstrate attosecond control of collective electron motion in plasmas driven by extreme intensity (≈1018 W cm−2) light fields. Controlled few-cycle near-infrared waves are tightly focused at the interface between vacuum and a solid-density plasma, where they launch and guide subcycle motion of electrons from the plasma with characteristic energies in the multi-kiloelectronvolt range—two orders of magnitude more than has been achieved so far in atoms and molecules. The basic spectroscopy of the coherent extreme ultraviolet radiation emerging from the light–plasma interaction allows us to probe this collective motion of charge with sub-200 as resolution. This is an important step towards attosecond control of charge dynamics in laser-driven plasma experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic and principle of the experiment.
Figure 2: Waveform-dependent plasma emission spectra.
Figure 3: Attosecond metrology of the plasma emission.
Figure 4: Moiré patterns in plasma emission spectra.


  1. 1

    Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    ADS  Article  Google Scholar 

  2. 2

    Malka, V. et al. Principles and applications of compact laser-plasma accelerators. Nature Phys. 4, 447–453 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Article  Google Scholar 

  4. 4

    Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Article  Google Scholar 

  9. 9

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Ivanov, M. & Krausz, F. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Heissler, P. et al. Toward single attosecond pulses using harmonic emission from solid-density plasmas. Appl. Phys. B 101, 511–521 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Rolland, C. & Corkum, P. B. Generation of 130-fsec midinfrared pulses. J. Opt. Soc. Am. B 3, 1625–1629 (1986).

    ADS  Article  Google Scholar 

  14. 14

    Kapteyn, H. C., Murnane, M. M., Szoke, A. & Falcone, R. W. Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490–492 (1991).

    ADS  Article  Google Scholar 

  15. 15

    Doumy, G. et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402 (2004).

    ADS  Article  Google Scholar 

  16. 16

    Dromey, B., Kar, S., Zepf, M. & Foster, P. The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 75, 645–649 (2004).

    ADS  Article  Google Scholar 

  17. 17

    Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nature Phys. 3, 424–429 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Brunel, F. Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987).

    ADS  Article  Google Scholar 

  19. 19

    Bonnaud, G., Gibbon, P., Kindel, J. & Williams, E. Laser interaction with a sharp-edged overdense plasma. Laser Part. Beams 9, 339–354 (1991).

    ADS  Article  Google Scholar 

  20. 20

    Thaury, C. & Quéré, F. High-order harmonic and attosecond pulse generation on plasma mirrors: Basic mechanisms. J. Phys. B 43, 21300 (2010).

    Article  Google Scholar 

  21. 21

    Kruer, W. L. The Physics of Laser Plasma Interaction (Westview Press, 2003).

    Google Scholar 

  22. 22

    Hinkel-Lipsker, D. E., Fried, B. D. & Morales, G. J. Analytic expressions for mode conversion in a plasma with a linear density profile. Phys. Fluids B 4, 559–575 (1992).

    ADS  Article  Google Scholar 

  23. 23

    Sheng, Z-M., Mima, K., Zhang, J. & Sanuki, H. Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003 (2005).

    ADS  Article  Google Scholar 

  24. 24

    Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nature Phys. 5, 124–128 (2009).

    ADS  Article  Google Scholar 

  26. 26

    Borot, A. et al. High-harmonic generation from plasma mirrors at kilohertz repetition rate. Opt. Lett. 36, 1461–1463 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Quéré, F. et al. Phase properties of laser high-order harmonics generated on plasma mirrors. Phys. Rev. Lett. 100, 095004 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Thaury, C. et al. Coherent dynamics of plasma mirrors. Nature Phys. 4, 631–634 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Amidror, I The Theory of the Moiré Phenomenon 2nd edn, Vol. I (Springer, 2009).

    Google Scholar 

Download references


The authors would like to thank M. Ivanov for fruitful discussions, E. Lefebvre for providing the PIC code CALDER and R. Nuter for modifying this code to include the CE phase parameter. The 2D PIC calculations were performed using the computing resources of the ‘Grand Equipement National de Calcul Intensif’ (GENCI), under project number 2011-056057, and those of the ‘Centre de Calcul Recherche et Technologie’ (CCRT). Financial support was received from the Agence Nationale pour la Recherche through programme Chaire d’Excellence 2004 and ANR-09-JC-JC-0063 (UBICUIL). A.B. acknowledges financial support from the réseaux thématiques de recherche avancée—Triangle de la Physique and F.Q. from the European Research Council (ERC grant agreement no 240013).

Author information




The experimental set-up was designed by A.B. and R.L-M., the driving laser system was developed by A.J., X.C. and R.L-M., the experiments were carried out by A.B. and A.M., the theoretical work was done by A.M. and F.Q. All authors participated in the elaboration of the research project.

Corresponding author

Correspondence to Arnaud Malvache.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 332 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borot, A., Malvache, A., Chen, X. et al. Attosecond control of collective electron motion in plasmas. Nature Phys 8, 416–421 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing