Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intense paramagnon excitations in a large family of high-temperature superconductors

Abstract

In the search for the mechanism of high-temperature superconductivity, intense research has been focused on the evolution of the spin excitation spectrum on doping from the antiferromagnetic insulating to the superconducting state of the cuprates. Because of technical limitations, the experimental investigation of doped cuprates has been largely focused on low-energy excitations in a small range of momentum space. Here we use resonant inelastic X-ray scattering to show that a large family of superconductors, encompassing underdoped YBa2Cu4O8 and overdoped YBa2Cu3O7, exhibits damped spin excitations (paramagnons) with dispersions and spectral weights closely similar to those of magnons in undoped cuprates. The comprehensive experimental description of this surprisingly simple spectrum enables quantitative tests of magnetic Cooper pairing models. A numerical solution of the Eliashberg equations for the magnetic spectrum of YBa2Cu3O7 reproduces its superconducting transition temperature within a factor of two, a level of agreement comparable to that of Eliashberg theories of conventional superconductors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scattering geometry and typical Cu L3-edge RIXS response of cuprates.
Figure 2: Experimental data.
Figure 3: Dispersion, linewidth and intensity of the magnetic excitations.
Figure 4: Results of model calculations.

References

  1. 1

    Scalapino, D. J. The case for d x 2 − y 2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995).

    ADS  Article  Google Scholar 

  2. 2

    Abanov, A., Chubukov, A. V. & Schmalian, J. Quantum-critical theory of the spin fermion model and its application to cuprates: Normal state analysis. Adv. Phys. 52, 119–218 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Birgeneau, R. J., Stock, C., Tranquada, J. M. & Yamada, K. Magnetic neutron scattering in hole-doped cuprate superconductors. J. Phys. Soc. Jpn 75, 111003 (2006).

    ADS  Article  Google Scholar 

  4. 4

    Eschrig, M. The effect of collective spin-1 excitations on electronic spectra in high-Tc superconductors. Adv. Phys. 55, 47–183 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nature Phys. 5, 217–221 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Fong, H. F. et al. Polarized and unpolarized neutron-scattering study of the dynamical spin susceptibility of YBa2Cu3O7 . Phys. Rev. B 54, 6708–6720 (1996).

    ADS  Article  Google Scholar 

  7. 7

    Hayden, S. M. et al. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x . Nature 430, 650–653 (2004).

    ADS  Article  Google Scholar 

  9. 9

    He, H. et al. Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2CuO6+δ . Science 295, 1045–1047 (2002).

    ADS  Article  Google Scholar 

  10. 10

    Reznik, D. et al. Local-moment fluctuations in the optimally doped high-Tc superconductor YBa2Cu3O6.95 . Phys. Rev. B 78, 132503 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Xu, G. et al. Testing the itinerancy of spin dynamics in superconducting Bi2Sr2CaCu2O8+δ . Nature Phys. 5, 642–646 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Yu, G. et al. Magnetic resonance in the model high-temperature superconductor HgBa2CuO4+δ . Phys. Rev. B 81, 064518 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Kee, H-Y., Kivelson, S. A. & Aeppli, G. Spin-1 neutron resonance peak cannot account for electronic anomalies in the cuprate superconductors. Phys. Rev. Lett. 88, 257002 (2002).

    ADS  Article  Google Scholar 

  14. 14

    Li, Y. et al. Hidden magnetic excitation in the pseudogap phase of a high- Tc superconductor. Nature 468, 283–285 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Maksimov, E. G., Kuli’c, M. L. & Dolgov, O. V. Bosonic spectral function and the electron–phonon interaction in HTSC cuprates. Adv. Cond. Mat. Phys. 2010, 423725 (2010).

    Google Scholar 

  16. 16

    Tranquada, J. M. et al. Neutron scattering study of magnetic excitations in YBa2Cu3O6+x . Phys. Rev. B 40, 4503–4516 (1989).

    ADS  Article  Google Scholar 

  17. 17

    Reznik, D. et al. Direct observation of optical magnons in YBa2Cu3O6.2 . Phys. Rev. B 53, R14741–R14744 (1996).

    ADS  Article  Google Scholar 

  18. 18

    Hayden, S. M. et al. High-frequency spin waves in YBa2Cu3O6.15 . Phys. Rev. B 54, R6905–R6908 (1996).

    ADS  Article  Google Scholar 

  19. 19

    Coldea, R. et al. Spin waves and electronic interactions in La2CuO4 . Phys. Rev. Lett. 86, 5377–5380 (2001).

    ADS  Article  Google Scholar 

  20. 20

    Ament, L. J. P. et al. Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Braicovich, L. et al. Dispersion of magnetic excitations in the cuprate La2CuO4 and CaCuO2 compounds measured using resonant X-ray scattering. Phys. Rev. Lett. 102, 167401 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Schlappa, J. et al. Collective magnetic excitations in the spin ladder Sr14Cu24O41 measured using high-resolution resonant inelastic X-ray scattering. Phys. Rev. Lett. 103, 047401 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Guarise, M. et al. measurement of magnetic excitations in the two-dimensional antiferromagnetic Sr2CuO2Cl2 insulator using resonant X-ray scattering: Evidence for extended interactions. Phys. Rev. Lett. 105, 157006 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Braicovich, L. et al. Momentum and polarization dependence of single-magnon spectral weight for Cu L3-edge resonant inelastic X-ray scattering from layered cuprates. Phys. Rev. B 81, 174533 (2010).

    ADS  Article  Google Scholar 

  25. 25

    Ament, L. J. P. et al. Theoretical demonstration of how the dispersion of magnetic excitations in cuprate compounds can be determined using resonant inelastic X-ray scattering. Phys. Rev. Lett. 103, 117003 (2009).

    ADS  Article  Google Scholar 

  26. 26

    Haverkort, M. W. Theory of resonant inelastic X-ray scattering by collective magnetic excitations. Phys. Rev. Lett. 105, 167404 (2010).

    ADS  Article  Google Scholar 

  27. 27

    Braicovich, L. et al. Magnetic excitations and phase separation in the underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering. Phys. Rev. Lett. 104, 077002 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Bobroff, J. et al. Absence of static phase separation in the high Tc cuprate YBa2Cu3O6+y . Phys. Rev. Lett. 89, 157002 (2002).

    ADS  Article  Google Scholar 

  29. 29

    Ghiringhelli, G. et al. Low energy electronic excitations in the layered cuprates studied by copper L3 resonant inelastic X-ray scattering. Phys. Rev. Lett. 92, 117406 (2004).

    ADS  Article  Google Scholar 

  30. 30

    Stock, C. et al. From incommensurate to dispersive spin-fluctuations: The high-energy inelastic spectrum in superconducting YBa2Cu3O6.5 . Phys. Rev. B 71, 024522 (2005).

    ADS  Article  Google Scholar 

  31. 31

    Vignolle, B. et al. Two energy scales in the spin excitations of the high-temperature superconductor La2−xSrxCuO4 . Nature Phys. 3, 163–167 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Lipscombe, O. J. et al. Emergence of coherent magnetic excitations in the high temperature underdoped La2−xSrxCuO4 superconductor at low temperatures. Phys. Rev. Lett. 102, 167002 (2009).

    ADS  Article  Google Scholar 

  33. 33

    Stock, C. et al. Effect of the pseudogap on suppressing high energy inelastic neutron scattering in superconducting YBa2Cu3O6.5 . Phys. Rev. B 82, 174505 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780–785 (2007).

    ADS  Article  Google Scholar 

  35. 35

    Bourges, P. et al. High-energy spin excitations in YBa2Cu3O6.5 . Phys. Rev. B 56, R11439 (1997).

    ADS  Article  Google Scholar 

  36. 36

    Tohyama, T., Horsch, P. & Maekawa, S. Spin and charge dynamics of the tJ model. Phys. Rev. Lett. 74, 980–983 (1995).

    ADS  Article  Google Scholar 

  37. 37

    Eder, R., Ohta, Y. & Maekawa, S. Anomalous spin and charge dynamics of the tJ model at low doping. Phys. Rev. Lett. 74, 5124–5127 (1995).

    ADS  Article  Google Scholar 

  38. 38

    Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

    ADS  Article  Google Scholar 

  39. 39

    Prelovšek, P. & Ramšak, A. Spectral functions and the pseudogap in the tJ model. Phys. Rev. B 63, 180506(R) (2001).

    ADS  Article  Google Scholar 

  40. 40

    Carbotte, J. P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990).

    ADS  Article  Google Scholar 

  41. 41

    Schrieffer, J. R. Ward’s identity and the suppression of spin fluctuation superconductivity. J. Low Temp. Phys. 99, 397–402 (1995).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge P. Bourges, J. van den Brink, D. Haug, J. P. Hill, B. J. Kim, D. Manske, D. F. McMorrow, Ch. Rüegg, S. Sachdev, G. Sawatzky, Y. Sidis and R. Zehyer for discussions, and B. Pingault for YBa2Cu4O8 sample surface preparation. This work was carried out at the ADRESS beamline using the SAXES instrument jointly built by the Paul Scherrer Institut (Villigen, Switzerland), Politecnico di Milano (Italy) and École polytechnique fédérale de Lausanne (Switzerland). Part of this research project has been supported by the European Commission under the Seventh Framework Programme: Research Infrastructures (grant agreement no 226716) and the European project SOPRANO under Marie Curie actions (grant no PITNGA-2008-214040).

Author information

Affiliations

Authors

Contributions

M.L.T., G.G., L.B., V.H. and B.K. managed the project. Y.T.S., G.L.S. and C.T.L. grew the single-crystalline samples; G.M.D.L. and M.S. prepared the thin films. M.L.T., G.G., M.M.S., V.H., M.M., M.B., S.B-C. and L.B. carried out the experiment assisted by K.J.Z., C.M. and T.S. M.L.T. and L.B. analysed the data. J.C., G.K. and M.W.H. carried out the theoretical calculations. M.L.T. and B.K. wrote the paper with comments from all co-authors.

Corresponding authors

Correspondence to M. Le Tacon or B. Keimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 349 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Tacon, M., Ghiringhelli, G., Chaloupka, J. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nature Phys 7, 725–730 (2011). https://doi.org/10.1038/nphys2041

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing