Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A quantum memory intrinsic to single nitrogen–vacancy centres in diamond


A quantum memory, composed of a long-lived qubit coupled to each processing qubit, is important to building a scalable platform for quantum information science. These two qubits should be connected by a fast and high-fidelity operation to store and retrieve coherent quantum states. Here, we demonstrate a room-temperature quantum memory based on the spin of the nitrogen nucleus intrinsic to each nitrogen–vacancy (NV) centre in diamond. We perform coherent storage of a single NV centre electronic spin in a single nitrogen nuclear spin using Landau–Zener transitions across a hyperfine-mediated avoided level crossing. By working outside the asymptotic regime, we demonstrate coherent state transfer in as little as 120 ns with total storage fidelity of 88±6%. This work demonstrates the use of a quantum memory that is compatible with scaling as the nitrogen nucleus is deterministically present in each NV centre defect.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and manipulation.
Figure 2: Single electron–nuclear storage operations.
Figure 3: Coherent nuclear spin storage.
Figure 4: Multi-axis storage.
Figure 5: Nuclear spin coherence time.


  1. 1

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. 2

    Simon, C. et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Balasubramanian, B. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–735 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A. & Wrachtrup, J. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

    ADS  Article  Google Scholar 

  11. 11

    Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    ADS  Article  Google Scholar 

  12. 12

    Smeltzer, B., McIntyre, J. & Childress, L. Robust control of individual nuclear spins in diamond. Phys. Rev. A 80, 050302(R) (2009).

    ADS  Article  Google Scholar 

  13. 13

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  15. 15

    Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Landau, L. D. Zur Theorie der Energieübertragung II. Phys. Z. Sow. 2, 46–51 (1932).

    MATH  Google Scholar 

  17. 17

    Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 137, 696–702 (1932).

    ADS  Article  Google Scholar 

  18. 18

    Stückelberg, E. C. G. Theorie der unelastichen Stösse zwischen Atomen. Helv. Phys. Acta 5, 369–422 (1932).

    Google Scholar 

  19. 19

    Majorana, E. Atomi orientati in campo magnetico variabile. Nuovo Cimento. 9, 43–50 (1932).

    Article  Google Scholar 

  20. 20

    Petta, J. R., Lu, H. & Gossard, A. C. A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Oliver, W. D. et al. Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2005).

    ADS  Article  Google Scholar 

  22. 22

    Shevchenko, S. N., Ashhab, S. & Nori, F. Landau–Zener–Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Felton, S. et al. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys. Rev. B 79, 075203 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Vitanov, N. V. & Garraway, B. M. Landau–Zener model: Effects of finite coupling duration. Phys. Rev. A 53, 4288–4304 (1996).

    ADS  Article  Google Scholar 

  25. 25

    Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen–vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    ADS  Article  Google Scholar 

  26. 26

    Manson, N. B., Rogers, L., Doherty, M. & Hollenberg, L. Optically induced spin polarization of the NV-centre in diamond: role of electron-vibration interaction, (2010).

  27. 27

    Fuchs, G. D. et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101, 117601 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Jaques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen–vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Steiner, M., Neumann, P., Beck, J., Jelezko, F. & Wrachtrup, J. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen–vacancy centers in diamond. Phys. Rev. B 81, 035205 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Hanson, R., Gywat, O. & Awschalom, D. D. Room-temperature manipulation and decoherence of a single spin in diamond. Phys. Rev. B 74, 161203(R) (2006).

    ADS  Article  Google Scholar 

  31. 31

    Haynes, W. M. & Lide, D. R. (eds) Handbook of Chemistry and Physics (CRC, 2010).

  32. 32

    de Lange, G., Wang, Z. H., Risté, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    ADS  Article  Google Scholar 

Download references


The authors thank H. Ribeiro for helpful comments on the theory. We gratefully acknowledge support from the AFOSR, ARO and DARPA. G.B. acknowledges funding from DFG within SFB767, from the Konstanz Center for Applied Photonics (CAP), and from the Research Initiative UltraQuantum.

Author information




The experiment was designed and analysed by G.D.F., G.B., P.V.K. and D.D.A. Measurements were made by G.D.F. and P.V.K. Samples were designed and fabricated by G.D.F. All authors contributed to writing the paper.

Corresponding author

Correspondence to D. D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 781 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuchs, G., Burkard, G., Klimov, P. et al. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nature Phys 7, 789–793 (2011).

Download citation

Further reading


Quick links