Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-sensitivity diamond magnetometer with nanoscale resolution

An Erratum to this article was published on 01 February 2011

This article has been updated

Abstract

The detection of weak magnetic fields with high spatial resolution is an important problem in diverse areas ranging from fundamental physics and material science to data storage and biomedical science. Here, we explore a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on nitrogen-vacancy centres in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic-field imager combining spatial resolution ranging from micrometres to millimetres with a sensitivity approaching a few fT Hz−1/2.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of a diamond-based magnetometer.
Figure 2: Control sequences for various operation modes of the magnetometer and corresponding sensitivities to magnetic fields.
Figure 3: Sensitivity per root volume (ηVa.c.) at high nitrogen-vacancy-centre density, for the a.c.-field echo measurement scheme.
Figure 4: Illustration of high-spatial-resolution magnetometry with a diamond nanocrystal.

Change history

  • 01 February 2011

    In the version of this Article originally published, the x axis of Fig. 2b was labelled incorrectly. This has now been corrected in the HTML and PDF versions.

References

  1. Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

    ADS  Article  Google Scholar 

  2. Chang, A. M. et al. Scanning Hall probe microscopy. Appl. Phys. Lett. 61, 1974–1976 (1992).

    ADS  Article  Google Scholar 

  3. Budker, D. et al. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002).

    ADS  Article  Google Scholar 

  4. Auzinsh, M. et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).

    ADS  Article  Google Scholar 

  5. Savukov, I. M., Seltzer, S. J., Romalis, M. V. & Sauer, K. L. Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005).

    ADS  Article  Google Scholar 

  6. Kominis, K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

    ADS  Article  Google Scholar 

  7. Vengalattore, M. et al. High-resolution magnetometry with a spinor Bose–Einstein condensate. Phys. Rev. Lett. 98, 200801 (2007).

    ADS  Article  Google Scholar 

  8. Zhao, K. F. & Wu, Z. Evanescent wave magnetometer. Appl. Phys. Lett. 89, 261113 (2006).

    ADS  Article  Google Scholar 

  9. Mamin, H. J., Poggio, M., Degen, C. L. & Rugar, D. Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotech. 2, 301–306 (2007).

    ADS  Article  Google Scholar 

  10. Seton, H., Hutchison, J. & Bussell, D. A tuned SQUID amplifier for MRI based on a DOIT flux locked loop. IEEE Trans. Appl. Supercond. 7, 3213–3216 (1997).

    ADS  Article  Google Scholar 

  11. Schlenga, K. et al. Low-field magnetic resonance imaging with a high-Tc DC superconducting quantum interference device. Appl. Phys. Lett. 75, 3695–3697 (1999).

    ADS  Article  Google Scholar 

  12. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    ADS  Article  Google Scholar 

  13. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    ADS  Article  Google Scholar 

  14. Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

    ADS  Article  Google Scholar 

  15. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    ADS  Article  Google Scholar 

  16. Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys. 1, 94–98 (2005).

    ADS  Article  Google Scholar 

  17. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    ADS  Article  Google Scholar 

  18. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  19. Kühn, S., Hettich, C., Schmitt, C., Poizat, J.-Ph. & Sandoghdar, V. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 202, 2–6 (2001).

    MathSciNet  Article  Google Scholar 

  20. Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    ADS  Article  Google Scholar 

  21. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    ADS  Article  Google Scholar 

  22. Salikhov, K. M. & Tsvetkov, Yu. D. in Time Domain Electron Spin Resonance (eds Kevan, L. & Schwartz, R. N.) (Wiley, New York, 1979).

    Google Scholar 

  23. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Preprint at <http://arxiv.org/abs/0805.0327> (2008).

  24. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007).

    ADS  Article  Google Scholar 

  25. Khutsishvili, G. R. Spin diffusion. Sov. Phys. Usp. 8, 743–769 (1966).

    ADS  Article  Google Scholar 

  26. Rabeau, J. R. et al. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 88, 023113 (2006).

    ADS  Article  Google Scholar 

  27. Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    ADS  Article  Google Scholar 

  28. Charnock, F. T. & Kennedy, T. A. Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond. Phys. Rev. B 64, 041201R (2001).

    ADS  Article  Google Scholar 

  29. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    ADS  Article  Google Scholar 

  30. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  31. Prins, J. F. Activation of boron-dopant atoms in ion-implanted diamonds. Phys. Rev. B 38, 5576–5584 (1988).

    ADS  Article  Google Scholar 

  32. Slichter, C. P. Principles of Magnetic Resonance 3rd edn (Springer, Berlin, 1996).

    Google Scholar 

  33. Mehring, M. Principle of High Resolution NMR in Solids (Springer, New York, 1983).

    Book  Google Scholar 

  34. Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).

    ADS  Article  Google Scholar 

  35. Khodjasteh, K. & Lidar, D. A. Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007).

    ADS  Article  Google Scholar 

  36. Mansfield, P. Symmetrized pulse sequences in high resolution NMR in solids. J. Phys. C 4, 1444–1452 (1971).

    ADS  Article  Google Scholar 

  37. Sekatskii, S. K. & Letokhov, V. S. Nanometer-resolution scanning optical microscope with resonance excitation of the fluorescence of the samples from a single-atom excited center. JETP Lett. 63, 311–315 (1996).

    ADS  Article  Google Scholar 

  38. Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    ADS  Article  Google Scholar 

  39. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    ADS  Article  Google Scholar 

  40. Mamin, H. J., Budakian, R., Chui, B. W. & Rugar, D. Magnetic resonance force microscopy of nuclear spins: Detection and manipulation of statistical polarization. Phys. Rev. B 72, 024413 (2005).

    ADS  Article  Google Scholar 

  41. Meriles, C. A. Optically detected nuclear magnetic resonance at the sub-micron scale. J. Magn. Reson. 176, 207–214 (2005).

    ADS  Article  Google Scholar 

  42. Veauvy, C., Hasselbach, K. & Mailly, D. Scanning μ-superconduction quantum interference device force microscope. Rev. Sci. Instrum. 73, 3825–3830 (2002).

    ADS  Article  Google Scholar 

  43. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Naturedoi:10.1038/nature07279 (2008).

  44. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Naturedoi:10.1038/nature07278 (2008).

  45. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    ADS  Article  Google Scholar 

  46. van Oort, E., Manson, N. B. & Glasbeek, M. Optically detected spin coherence of the diamond N-V centre in its triplet ground state. J. Phys. C: Solid State Phys. 21, 4385–4391 (1988).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge conversations with D. Awschalom, A. Cohen, J. Doyle, G. Dutt, J. Maze, E. Togan, P. Stanwix, J. Hodges, S. Hong and M. P. Ledbetter. This work was supported by the NSF, ONR, MURI, DARPA and the David and Lucile Packard Foundation. J.M.T. is supported by the Pappalardo Fellowship; P.C. is supported by the ITAMP Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Lukin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, J., Cappellaro, P., Childress, L. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys 4, 810–816 (2008). https://doi.org/10.1038/nphys1075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1075

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing