Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Valley-polarized exciton–polaritons in a monolayer semiconductor

Abstract

Single layers of transition metal dichalcogenides are two-dimensional (2D) direct-bandgap semiconductors with degenerate, but inequivalent, ‘valleys’ in the electronic structure that can be selectively excited by polarized light. Coherent superpositions of light and matter, exciton–polaritons, have been observed when these materials are strongly coupled to photons, but these hybrid quasiparticles do not harness the valley sensitivity of the monolayer semiconductors. Here, we observe valley-polarized exciton–polaritons in monolayers of MoS2 embedded in a dielectric microcavity. These light–matter quasiparticles emit polarized light with spectral Rabi splitting and anticrossing indicative of strongly coupled exciton–polaritons in the topologically separate spin-coupled valleys. The interplay of intervalley depolarization and cavity-modified exciton dynamics in the high-cooperativity regime causes valley-polarized exciton–polaritons to persist at room temperature, distinct from the vanishing polarization in bare monolayers. Achieving polarization-sensitive polaritonic devices operating at room temperature presents a pathway for manipulating novel valley degrees of freedom in coherent states of light and matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Valley-polarized exciton–polaritons in MC-MoS2.
Figure 2: The dispersion of exciton–polaritons in MoS2.
Figure 3: Valley-polarized emission.
Figure 4: Temperature-dependent valley-polarized exciton–polariton emission.

Similar content being viewed by others

References

  1. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  2. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (January, 1989).

    Article  ADS  Google Scholar 

  3. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Physica Scripta 1998, 127–137 (1998).

    Article  Google Scholar 

  4. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  5. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  6. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  7. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  8. Houdré, R. et al. Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments. Phys. Rev. Lett. 73, 2043–2046 (1994).

    Article  ADS  Google Scholar 

  9. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  Google Scholar 

  10. Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    Article  ADS  Google Scholar 

  11. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  ADS  Google Scholar 

  12. Lenferink, E. J., Wei, G. & Stern, N. P. Coherent optical non-reciprocity in axisymmetric resonators. Opt. Express 22, 16099–16111 (2014).

    Article  ADS  Google Scholar 

  13. Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).

    Google Scholar 

  14. Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotech. 10, 775–778 (2015).

    Article  ADS  Google Scholar 

  15. Junge, C., O'Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    Article  ADS  Google Scholar 

  16. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  17. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  18. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  19. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  20. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  21. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    Article  ADS  Google Scholar 

  22. Kioseoglou, G. et al. Valley polarization and intervalley scattering in monolayer MoS2 . Appl. Phys. Lett. 101, 221907 (2012).

    Article  ADS  Google Scholar 

  23. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  24. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    Article  ADS  Google Scholar 

  25. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  26. Rohling, N. & Burkard, G. Universal quantum computing with spin and valley states. New J. Phys. 14, 083008 (2012).

    Article  ADS  Google Scholar 

  27. Behnia, K. Condensed-matter physics: polarized light boosts valleytronics. Nat. Nanotech. 7, 488–489 (2012).

    Article  ADS  Google Scholar 

  28. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nat. Nanotech. 8, 634–638 (2013).

    Article  ADS  Google Scholar 

  29. Wang, G. et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 117, 187401 (2016).

    Article  ADS  Google Scholar 

  30. Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013).

    Article  ADS  Google Scholar 

  31. Wu, S. et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater. 1, 011001 (2014).

    Article  Google Scholar 

  32. Schwarz, S. et al. Two-dimensional metal–chalcogenide films in tunable optical microcavities. Nano Lett. 14, 7003–7008 (2014).

    Article  ADS  Google Scholar 

  33. Wei, G., Stanev, T. K., Czaplewski, D. A., Jung, I. W. & Stern, N. P. Silicon-nitride photonic circuits interfaced with monolayer MoS2 . Appl. Phys. Lett. 107, 091112 (2015).

    Article  ADS  Google Scholar 

  34. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    Article  ADS  Google Scholar 

  35. Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

    Article  ADS  Google Scholar 

  36. Flatten, L. C. et al. Room-temperature exciton-polaritons with two-dimensional WS2 . Sci. Rep. 6, 33134 (2016).

    Article  ADS  Google Scholar 

  37. Lundt, N. et al. Monolayered MoSe2: a candidate for room temperature polaritonics. 2D Mater. 4, 015006 (2017).

    Article  Google Scholar 

  38. Paraïso, T. K., Wouters, M., Léger, Y., Morier-Genoud, F. & Deveaud-Plédran, B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nat. Mater. 9, 655–660 (2010).

    Article  ADS  Google Scholar 

  39. Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Heterodyne spectroscopy of polariton spinor interactions. Phys. Rev. B 90, 195307 (2014).

    Article  ADS  Google Scholar 

  40. Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  41. Low, T. et al. Polaritons in layered two-dimensional materials. Nat Mater. 16, 182–194 (2016).

    Article  ADS  Google Scholar 

  42. Basov, D. N., Fogler, M. M. & Garca de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  43. Savona, V., Andreani, L., Schwendimann, P. & Quattropani, A. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Commun. 93, 733–739 (1995).

    Article  ADS  Google Scholar 

  44. Plechinger, G. et al. Low-temperature photoluminescence of oxide-covered single-layer MoS2 . Phys. Status Solidi 6, 126–128 (2012).

    Google Scholar 

  45. Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  46. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014).

    Article  ADS  Google Scholar 

  47. Laussy, F. P., Del Valle, E. & Tejedor, C. Luminescence spectra of quantum dots in microcavities. I. Bosons. Phys. Rev. B 79, 235325 (2009).

    Article  ADS  Google Scholar 

  48. Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).

    Article  ADS  Google Scholar 

  49. Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Article  ADS  Google Scholar 

  50. Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794–2800 (2015).

    Article  ADS  Google Scholar 

  51. Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  Google Scholar 

  52. Lin, Y.-C. et al. Clean transfer of graphene for isolation and suspension. ACS Nano 5, 2362–2368 (2011).

    Article  Google Scholar 

  53. Park, H. J., Meyer, J., Roth, S. & Skákalová, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award no. DE-SC0012130 (cavity spectroscopy), by the National Science Foundation MRSEC program under grant no. DMR-1121262 (transfer and device assembly), and by the National Science Foundation under grant no. DMR-1507810 (CVD growth). This work made use of the EPIC and KECK-II facilities of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This work utilized Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is partially supported by Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205), the Materials Research Science and Engineering Center (NSF DMR-1121262), the State of Illinois, and Northwestern University. J.D.C. is supported by the Department of Defense through the National Defense Science and Engineering Fellowship (NDSEG) Program. J.D.C. also gratefully acknowledges support from the Ryan Fellowship and the IIN. N.P.S. acknowledges support as an Alfred P. Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

N.P.S. and Y.-J.C. conceived the experiments. Y.-J.C. fabricated the MC. J.D.C. and V.P.D. synthesized the monolayers. T.K.S. and Y.-J.C. performed material characterization and transfer. Y.-J.C. performed measurements and modelling. Y.-J.C. and N.P.S. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nathaniel P. Stern.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YJ., Cain, J., Stanev, T. et al. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nature Photon 11, 431–435 (2017). https://doi.org/10.1038/nphoton.2017.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.86

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing