Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source

Abstract

Coherent diffractive imaging is unique, being the only route for achieving high spatial resolution in the extreme ultraviolet and X-ray regions, limited only by the wavelength of the light. Recently, advances in coherent short-wavelength light sources, coupled with progress in algorithm development, have significantly enhanced the power of X-ray imaging. However, so far, high-fidelity diffraction imaging of periodic objects has been a challenge because the scattered light is concentrated in isolated peaks. Here, we use tabletop 13.5 nm high-harmonic beams to make two significant advances. First, we demonstrate high-quality imaging of an extended, nearly periodic sample for the first time. Second, we achieve subwavelength spatial resolution (12.6 nm) imaging at short wavelengths, also for the first time. The key to both advances is a novel technique called ‘modulus enforced probe’, which enables robust and quantitative reconstructions of periodic objects. This work is important for imaging next-generation nano-engineered devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: MEP X-ray microscopy with 13.5 nm EUV light from a tabletop high-harmonic source.
Figure 2: Schematic layout of the MEP constraint within the ptychography algorithm.
Figure 3: Record 0.9λ subwavelength-resolution full-field imaging using 13.5 nm light and MEP.
Figure 4: Zone plate lineout and height map.
Figure 5: Minimization of artefacts in the reconstructed illumination with probe enforcement.

References

  1. Shapiro, D. A. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photon. 8, 765–769 (2014).

    Article  ADS  Google Scholar 

  2. Donnelly, C. et al. Element-specific X-ray phase tomography of 3D structures at the nanoscale. Phys. Rev. Lett. 114, 115501 (2015).

    Article  ADS  Google Scholar 

  3. Beckers, M. et al. Chemical contrast in soft X-ray ptychography. Phys. Rev. Lett. 107, 208101 (2011).

    Article  ADS  Google Scholar 

  4. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    Article  ADS  Google Scholar 

  5. Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002).

    Article  ADS  Google Scholar 

  6. Zhang, X. et al. Highly coherent light at 13 nm generated by use of quasi-phase-matched high-harmonic generation. Opt. Lett. 29, 1357–1359 (2004).

    Article  ADS  Google Scholar 

  7. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

    Article  ADS  Google Scholar 

  8. Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348, 530–535 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  9. Clark, J. N. et al. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341, 56–59 (2013).

    Article  ADS  Google Scholar 

  10. Leshem, B. et al. Direct single-shot phase retrieval from the diffraction pattern of separated objects. Nat. Commun. 7, 10820 (2016).

    Article  ADS  Google Scholar 

  11. Odstrcil, M. et al. Ptychographic imaging with a compact gas–discharge plasma extreme ultraviolet light source. Opt. Lett. 40, 5574–5577 (2015).

    Article  ADS  Google Scholar 

  12. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    Article  ADS  Google Scholar 

  13. Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).

    Article  ADS  Google Scholar 

  14. Roy, S. et al. Lensless X-ray imaging in reflection geometry. Nat. Photon. 5, 243–245 (2011).

    Article  ADS  Google Scholar 

  15. Sun, T., Jiang, Z., Strzalka, J., Ocola, L. & Wang, J. Three-dimensional coherent X-ray surface scattering imaging near total external reflection. Nat. Photon. 6, 586–590 (2012).

    Article  ADS  Google Scholar 

  16. Sayre, D. Prospects for long wavelength X-ray microscopy and diffraction. Imaging Processes Coherence Phys. 112, 229–235 (1980).

    Article  ADS  Google Scholar 

  17. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  ADS  Google Scholar 

  18. Chao, W., Harteneck, B., Liddle, J., Anderson, E. & Attwood, D. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).

    Article  ADS  Google Scholar 

  19. Huang, X. et al. Signal-to-noise and radiation exposure considerations in conventional and diffraction X-ray microscopy. Opt. Express 17, 13541–13553 (2009).

    Article  ADS  Google Scholar 

  20. Fienup, J. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978).

    Article  ADS  Google Scholar 

  21. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  ADS  Google Scholar 

  22. Elser, V. Random projections and the optimization of an algorithm for phase retrieval. J. Phys. A 36, 2995–3007 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  23. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  ADS  Google Scholar 

  24. Luke, D. R. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  25. Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14, 063004 (2012).

    Article  ADS  Google Scholar 

  26. Shechtman, Y. et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87–109 (2015).

    Article  ADS  Google Scholar 

  27. Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998).

    Article  ADS  Google Scholar 

  28. Zürch, M. et al. Real-time and sub-wavelength ultrafast coherent diffraction imaging in the extreme ultraviolet. Sci. Rep. 4, 7356 (2014).

    Article  Google Scholar 

  29. Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    Article  ADS  Google Scholar 

  30. Rodenburg, J. M. Ptychography and related diffractive imaging methods. Adv. Imag. Electron Phys. 150, 87–184 (2008).

    Article  Google Scholar 

  31. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  ADS  Google Scholar 

  32. Guizar-Sicairos, M. & Fienup, J. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Express 16, 7264–7278 (2008).

    Article  ADS  Google Scholar 

  33. Kane, D. J. Method and apparatus for determining wave characteristics from wave phenomena. US patent 6,219,142 B1 (2001).

  34. Maiden, A. & Rodenburg, J. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Article  Google Scholar 

  35. Seaberg, M. et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography. Optica 1, 39–44 (2014).

    Article  ADS  Google Scholar 

  36. Zhang, B. et al. High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography. Ultramicroscopy 158, 98–104 (2015).

    Article  Google Scholar 

  37. Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843 (1952).

    Article  Google Scholar 

  38. Harada, T., Nakasuji, M., Nagata, Y., Watanabe, T. & Kinoshita, H. Phase imaging of extreme-ultraviolet mask using coherent extreme-ultraviolet scatterometry microscope. Jpn J. Appl. Phys. 52, 06GB02 (2013).

    Google Scholar 

  39. Shanblatt, E. R. et al. Quantitative chemically-specific coherent diffractive imaging of buried interfaces using a tabletop EUV nanoscope. Nano Lett. 19, 5444–5450 (2016).

    Article  ADS  Google Scholar 

  40. Kapteyn, H. C., Murnane, M. M. & Christov, I. P. Extreme nonlinear optics: coherent X rays from lasers. Phys. Today 58, 39–44 (2005).

    Article  Google Scholar 

  41. Thibault, P., Dierolf, M., Bunk, O., Menzel, A. & Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109, 338–343 (2009).

    Article  Google Scholar 

  42. Putkunz, C. T. et al. Phase-diverse coherent diffractive imaging: high sensitivity with low dose. Phys. Rev. Lett. 106, 013903 (2011).

    Article  ADS  Google Scholar 

  43. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  44. Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).

    Article  ADS  Google Scholar 

  45. Batey, D. J., Claus, D. & Rodenburg, J. M. Information multiplexing in ptychography. Ultramicroscopy 138, 13–21 (2013).

    Article  Google Scholar 

  46. Edo, T. B. et al. Sampling in X-ray ptychography. Phys. Rev. A 87, 053850 (2013).

    Article  ADS  Google Scholar 

  47. Batey, D. J. et al. Reciprocal-space up-sampling from real-space oversampling in X-ray ptychography. Phys. Rev. A 89, 043812 (2014).

    Article  ADS  Google Scholar 

  48. Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).

    Article  ADS  Google Scholar 

  49. Godden, T. M., Suman, R., Humphry, M. J., Rodenburg, J. M. & Maiden, A. M. Ptychographic microscope for three-dimensional imaging. Opt. Express 22, 12513–12523 (2014).

    Article  ADS  Google Scholar 

  50. Zhang, F. et al. Translation position determination in ptychographic coherent diffraction imaging. Opt. Express 21, 13592–13606 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.M.M. and H.C.K. acknowledge support from the Defense Advanced Research Projects Agency PULSE programme (DARPA-BAA-12-63-FP-004), the Gordon and Betty Moore Foundation Experimental Investigator programme in Emergent Phenomena in Quantum Systems (grant no. GBMF4538) and the National Science Foundation Science and Technology Centers (NSF STROBE, grant no. NSF DMR-1548924). D.F.G., C.L.P., C.B. and R.K. acknowledge Graduate Fellowship support from the Ford Foundation, the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship Program. X.Z., D.E.A., M.M.M. and H.C.K. acknowledge the Department of Energy STTR/SBIR phase IIB Grant (grant no. DE-SC0006514).

Author information

Authors and Affiliations

Authors

Contributions

H.C.K. and M.M.M. conceived of the experiment. All authors designed aspects of the experiment, performed the research and wrote the paper. D.F.G. and G.F.M. characterized the source and collected the data sets. D.F.G. performed the reconstructions and data analysis. G.F.M. carried out the SEM imaging of the zone plate. D.E.A., D.F.G. and M.T. performed the probe enforcement simulations. X.Z., H.C.K., M.M.M. and B.R.G. designed the HHG source.

Corresponding author

Correspondence to Dennis F. Gardner.

Ethics declarations

Competing interests

E.R.S., C.L.P., M.T., D.F.G., D.E.A., G.F.M., M.M.M. and H.C.K. have submitted a patent disclosure based on this work. M.M.M. and H.C.K. are partial owners of Kapteyn-Murnane Laboratories Inc. who manufactured the ultrafast laser and EUV source.

Supplementary information

Supplementary information

Supplementary information (PDF 1499 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gardner, D., Tanksalvala, M., Shanblatt, E. et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source. Nature Photon 11, 259–263 (2017). https://doi.org/10.1038/nphoton.2017.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing