Temporal solitons in microresonators driven by optical pulses

Article metrics

Abstract

Continuous-wave laser-driven, high-Q Kerr–nonlinear optical microresonators have enabled the generation of optical frequency combs, ultralow-noise microwaves and ultrashort optical pulses at tens of gigahertz repetition rate. Here, we break with the paradigm of the continuous-wave driving and instead use periodic, picosecond optical pulses. In a fibre-based Fabry–Pérot microresonator we observe the deterministic generation of stable femtosecond dissipative cavity solitons ‘on top’ of the resonantly enhanced driving pulses. The solitons lock to the driving pulse, which enables direct all-optical control of the soliton's repetition rate and tuning of its carrier-envelope offset frequency. When compared with continuous-wave-driven microresonators or non-resonant pulsed supercontinuum generation, this new approach is more efficient and can yield broadband frequency combs at an average driving power significantly below the continuous-wave parametric threshold. Bridging the fields of continuous-wave-driven resonant and pulse-driven non-resonant nonlinear optics, these results enable efficient microresonator frequency combs, resonant supercontinuum generation and microphotonic pulse compression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental scheme and set-up.
Figure 2: Experimental soliton generation.
Figure 3: Numerical simulation of soliton formation in a pulse-driven microresonator.
Figure 4: Comparison of c.w. versus pulsed driving and multi-solitons.
Figure 5: Soliton-to-pulse locking.

References

  1. 1

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  2. 2

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

  3. 3

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

  4. 4

    Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

  5. 5

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

  6. 6

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

  7. 7

    Cole, D. C., Lamb, E. S., Del'Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Preprint at http://arXiv.org/abs/1610.00080 (2016).

  8. 8

    Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

  9. 9

    Grudinin, I. S. et al. High-contrast Kerr frequency combs. Optica 4, 434–437 (2017).

  10. 10

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

  11. 11

    Dutt, A. et al. On-chip dual comb source for spectroscopy. Preprint at http://arXiv.org/abs/1611.07673 (2016).

  12. 12

    Pavlov, N. G. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

  13. 13

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

  14. 14

    Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

  15. 15

    Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton Kerr frequency comb. Light: Sci. Appl. 6, e16202 (2016).

  16. 16

    Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

  17. 17

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

  18. 18

    Xue, X., Wang, P. H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

  19. 19

    Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2016).

  20. 20

    Matsko, A. B., Savchenkov, A. A. & Maleki, L. On excitation of breather solitons in an optical microresonator. Opt. Lett. 37, 4856–4858 (2012).

  21. 21

    Leo, F., Gelens, L., Emplit, P., Haelterman, M. & Coen, S. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21, 9180–9191 (2013).

  22. 22

    Luo, K., Jang, J. K., Coen, S., Murdoch, S. G. & Erkintalo, M. Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator. Opt. Lett. 40, 3735–3738 (2015).

  23. 23

    Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. & Kippenberg, T. Breathing dissipative solitons in optical microresonators. Preprint at http://arXiv.org/abs/1611.06567 (2016).

  24. 24

    Yu, M. et al. Breather soliton dynamics in microresonators. Nat. Commun. 8, 14569 (2017).

  25. 25

    Bao, C. et al. Weiner. Soliton repetition rate in a silicon-nitride microresonator. Opt. Lett. 42, 759–762 (2017).

  26. 26

    Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

  27. 27

    Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field. Opt. Lett. 40, 4755–4758 (2015).

  28. 28

    Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

  29. 29

    Lobanov, V. E. et al. Harmonization of chaos into a soliton in Kerr frequency combs. Opt. Express 24, 27382–27394 (2016).

  30. 30

    Taheri, H., Eftekhar, A. A., Wiesenfeld, K. & Adibi, A. Soliton formation in whispering-gallery-mode resonators via input phase modulation. IEEE Photon. J. 7, 1–9 (2015).

  31. 31

    Papp, S. B., Del'Haye, P. & Diddams, S. A. Parametric seeding of a microresonator optical frequency comb. Opt. Express 21, 17615–17624 (2013).

  32. 32

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phy. 78, 1135–1184 (2006).

  33. 33

    Malinowski, M., Rao, A., Delfyett, P. & Fathpour, S. Optical frequency comb generation by pulsed pumping. APL Photon. 2, 066101 (2017).

  34. 34

    Coen, S., Tlidi, M., Emplit, Ph. & Haelterman, M. Convection versus dispersion in optical bistability. Phys. Rev. Lett. 83, 2328–2331 (1999).

  35. 35

    Papp, S. B., Del'Haye, P. & Diddams, S. A. Mechanical control of a microrod-resonator optical frequency comb. Phys. Rev. X 3, 031003 (2013).

  36. 36

    Xu, Y. & Coen, S. Experimental observation of the spontaneous breaking of the time-reversal symmetry in a synchronously pumped passive Kerr resonator. Opt. Lett. 39, 3492–3495 (2014).

  37. 37

    Anderson, M., Leo, F., Coen, S., Erkintalo, M. & Murdoch, S. G. Observations of spatiotemporal instabilities of temporal cavity solitons. Optica 3, 1071–1074 (2016).

  38. 38

    Suzuki, K., Haus, H. A. & Nakazawa, M. Parametric soliton laser. Opt. Lett. 14, 320–322 (1989).

  39. 39

    Serkland, D. K., Bartolini, G. D., Agarwal, A., Kumar, P. & Kath, W. L. Pulsed degenerate optical parametric oscillator based on a nonlinear-fiber Sagnac interferometer. Opt. Lett. 23, 795–797 (1998).

  40. 40

    Jones, R. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27, 1848–1850 (2002).

  41. 41

    Braje, D., Hollberg, L. & Diddams, S. Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser. Phys. Rev. Lett. 102, 193902 (2009).

  42. 42

    Kobayashi, T. et al. Optical pulse compression using high-frequency electrooptic phase modulation. IEEE J. Quantum Electron. 24, 382–387 (1988).

  43. 43

    Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

  44. 44

    Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

  45. 45

    Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

  46. 46

    Kafka, J. D., Watts, M. L. & Pieterse, J. W. Synchronously pumped optical parametric oscillators with LiB3O5 . J. Opt. Soc. Am. B 12, 2147–2157 (1995).

  47. 47

    Fuerst, C., Leitenstorfer, A. & Laubereau, A. Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser. IEEE J. Sel. Top. Quantum Electron. 2, 473–479 (1996).

  48. 48

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

  49. 49

    Beha, K. et al. Self-referencing a continuous-wave laser with electro-optic modulation. Preprint at http://arXiv.org/abs/1507.06344 (2015).

  50. 50

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. http://dx.doi.org/10.1038/nphoton.2017.117 (2017).

Download references

Acknowledgements

The authors thank T. Kippenberg, V. Brasch, E. Lucas, S. Diddams and S. Papp for discussions. This work was funded by the Swiss National Science Foundation (SNF) grant 200021_166108 and the Canton of Neuchâtel.

Author information

E.O., S.L. and T.H. set up the pulsed laser. S.L. and T.H. designed the microresonator. E.O. and T.H. performed the experiments and simulations. T.H. conceived and supervised the work. All authors participated in writing the Article.

Correspondence to Tobias Herr.

Ethics declarations

Competing interests

CSEM has filed patent applications on both the fibre-based resonator and the pulsed driving of a resonator.

Supplementary information

Supplementary information

Supplementary information (PDF 859 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nature Photon 11, 600–607 (2017) doi:10.1038/nphoton.2017.140

Download citation

Further reading