Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses

Abstract

External driving of passive, nonlinear optical resonators has emerged over the past decade as a novel route for the generation of ultrashort optical pulses and corresponding broadband frequency combs. Although the pulse formation dynamics in such systems dramatically differ from those manifesting themselves in conventional mode-locked lasers, the demarcation between the two traditionally distinct paradigms has recently begun to blur, with demonstrations of hybrid systems incorporating both external driving and active media shown to offer specific advantages. Here we explore a new pathway for ultrashort pulse generation at the interface of externally driven passive resonators and lasers. By leveraging the nonlinear Raman gain inherent in fused silica, we achieve the deterministic generation of low-noise dissipative solitons with durations well below 100 fs via the phase-coherent pulsed driving of resonators made of standard, commercially available optical fibre. We explore and explain the physics of the new dissipative Raman soliton states, identifying scaling laws that govern the pulses’ characteristics and that allow output repetition rates to be scaled at will without influencing the soliton duration. The scheme explored in our work enables the shortest-ever pulses generated in resonators (active or passive) made from a single commercially available optical fibre, to the best of our knowledge, and it has the potential to be transferred into a chip-scale format by using existing dispersion-engineered silica microresonators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental demonstration of dissipative Raman soliton generation.
Fig. 2: Numerically simulated dynamics of Raman soliton formation.
Fig. 3: Scaling laws of dissipative Raman solitons.
Fig. 4: Multisoliton operation.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and the other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    ADS  Google Scholar 

  2. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Google Scholar 

  3. K. Jang, J., Erkintalo, M., G. Murdoch, S. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photon. 7, 657–663 (2013).

    ADS  Google Scholar 

  4. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Google Scholar 

  5. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Google Scholar 

  6. J. Kippenberg, T., L. Gaeta, A., Lipson, M. & L. Gorodetsky, M. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Google Scholar 

  7. Lilienfein, N. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nat. Photon. 13, 214–218 (2019).

    ADS  Google Scholar 

  8. Yi, X., Yang, Q.-F., Y. Yang, K., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    ADS  Google Scholar 

  9. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Google Scholar 

  10. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Google Scholar 

  11. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Google Scholar 

  12. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).

    ADS  Google Scholar 

  13. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    ADS  Google Scholar 

  14. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS  Google Scholar 

  15. Yi, M.-G. Suh,X. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    ADS  Google Scholar 

  16. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    ADS  Google Scholar 

  17. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    ADS  Google Scholar 

  18. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    ADS  Google Scholar 

  19. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    ADS  Google Scholar 

  20. Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    ADS  Google Scholar 

  21. Nielsen, A. U., Garbin, B., Coen, S., Murdoch, S. G. & Erkintalo, M. Invited article: emission of intense resonant radiation by dispersion-managed Kerr cavity solitons. APL Photon. 3, 120804 (2018).

    ADS  Google Scholar 

  22. Spiess, C., Yang, Q., Dong, X., G. Bucklew, V. & Renninger, W. H. Chirped dissipative solitons in driven optical resonators. Optica 8, 861–869 (2021).

    ADS  Google Scholar 

  23. Dong, X., Wang, Z. & Renninger, W. H. 120-fs single-pulse generation from stretched-pulse fiber Kerr resonators. Opt. Lett. 47, 4443–4446 (2022).

    ADS  Google Scholar 

  24. Xiao, Z. et al. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl. 12, 33 (2023).

    ADS  Google Scholar 

  25. Moille, G. et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun. 12, 7275 (2021).

    ADS  Google Scholar 

  26. Firth, W. Buffering optical data. Nat. Photon. 4, 415–417 (2010).

    ADS  Google Scholar 

  27. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photon. 13, 384–389 (2019).

    ADS  Google Scholar 

  28. Englebert, N., Mas Arabí, C., Parra-Rivas, P., Gorza, S.-P. & Leo, F. Temporal solitons in a coherently driven active resonator. Nat. Photon. 15, 536–541 (2021).

    ADS  Google Scholar 

  29. Columbo, L. et al. Unifying frequency combs in active and passive cavities: temporal solitons in externally driven ring lasers. Phys. Rev. Lett. 126, 173903 (2021).

    ADS  Google Scholar 

  30. Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022).

    ADS  Google Scholar 

  31. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    ADS  Google Scholar 

  32. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    ADS  Google Scholar 

  33. Chembo, Y. K., Grudinin, I. S. & Yu, N. Spatiotemporal dynamics of Kerr-Raman optical frequency combs. Phys. Rev. A 92, 043818 (2015).

    ADS  Google Scholar 

  34. Lin, G., Diallo, S., Dudley, J. M. & Chembo, Y. K. Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators. Opt. Express 24, 14880–14894 (2016).

    ADS  Google Scholar 

  35. Ivars, S. B., Kartashov, Y. V., Torner, L., Conejero, J. A. & Milián, C. Reversible self-replication of spatiotemporal Kerr cavity patterns. Phys. Rev. Lett. 126, 063903 (2021).

    ADS  Google Scholar 

  36. Lin, G. & Song, Q. Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser Photon. Rev. 16, 2100184 (2022).

    ADS  Google Scholar 

  37. Milián, C., Gorbach, A. V., Taki, M., Yulin, A. V. & Skryabin, D. V. Solitons and frequency combs in silica microring resonators: interplay of the Raman and higher-order dispersion effects. Phys. Rev. A 92, 033851 (2015).

    ADS  Google Scholar 

  38. Webb, K. E., Erkintalo, M., Coen, S. & Murdoch, S. G. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett. 41, 4613–4616 (2016).

    ADS  Google Scholar 

  39. Wang, Y., Anderson, M., Coen, S., Murdoch, S. G. & Erkintalo, M. Stimulated Raman scattering imposes fundamental limits to the duration and bandwidth of temporal cavity solitons. Phys. Rev. Lett. 120, 053902 (2018).

    ADS  Google Scholar 

  40. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

    ADS  Google Scholar 

  41. Babin, S. A. et al. Multicolour nonlinearly bound chirped dissipative solitons. Nat. Commun. 5, 4653 (2014).

    ADS  Google Scholar 

  42. Völkel, A., Nimmesgern, L., Mielnik-Pyszczorski, A., Wirth, T. & Herink, G. Intracavity Raman scattering couples soliton molecules with terahertz phonons. Nat. Commun. 13, 2066 (2022).

    ADS  Google Scholar 

  43. Xu, Y. et al. Frequency comb generation in a pulse-pumped normal dispersion Kerr mini-resonator. Opt. Lett. 46, 512–515 (2021).

    ADS  Google Scholar 

  44. Kafka, J. D. & Baer, T. Fiber Raman soliton laser pumped by a Nd:YAG laser. Opt. Lett. 12, 181–183 (1987).

    ADS  Google Scholar 

  45. Gouveia-Neto, A. S., Gomes, A. S. L. & Taylor, J. R. Soliton Raman fibre-ring oscillators. Opt. Quant. Electron. 20, 165–174 (1988).

    Google Scholar 

  46. Keller, U., Li, K., Rodwell, M. & Bloom, D. Noise characterization of femtosecond fiber Raman soliton lasers. IEEE J. Quant. Electron. 25, 280–288 (1989).

    ADS  Google Scholar 

  47. Harvey, J. D. & Leonhardt, R. Argon pumped fiber Raman laser. In Conference on Lasers and Electro-Optics (1990) JTUA6 (Optica Publishing Group, 1990).

  48. Yang, K. Y. et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photon. 10, 316–320 (2016).

    ADS  Google Scholar 

  49. Fujii, L. et al. Dispersion tailoring in wedge microcavities for Kerr comb generation. Opt. Lett. 45, 3232–3235 (2020).

    ADS  Google Scholar 

  50. Li, Z., Xu, Y., Coen, S., Murdoch, S. G. & Erkintalo, M. Experimental observations of bright dissipative cavity solitons and their collapsed snaking in a Kerr resonator with normal dispersion driving. Optica 7, 1195–1203 (2020).

    ADS  Google Scholar 

  51. Agrawal, G.P. Nonlinear Fiber Optics 6th edn (Academic Press, 2019).

  52. Rishøj, L., Tai, B., Kristensen, P. & Ramachandran, S. Soliton self-mode conversion: revisiting Raman scattering of ultrashort pulses. Optica 6, 304–308 (2019).

    ADS  Google Scholar 

  53. Antikainen, A., Rishøj, L., Tai, B., Ramachandran, S. & Agrawal, G. P. Fate of a soliton in a high order spatial mode of a multimode fiber. Phys. Rev. Lett. 122, 023901 (2019).

    ADS  Google Scholar 

  54. Skryabin, D. V. & Gorbach, A. V. Colloquium: looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287–1299 (2010).

    ADS  Google Scholar 

  55. Margalit, M., Orenstein, M. & Haus, H. Injection locking of a passively mode-locked laser. IEEE J. Quantum Electron. 32, 155–160 (1996).

    ADS  Google Scholar 

  56. Komarov, A., Komarov, K., Niang, A. & Sanchez, F. Nature of soliton interaction in fiber lasers with continuous external optical injection. Phys. Rev. A 89, 013833 (2014).

    ADS  Google Scholar 

  57. Ribenek, V. A., Korobko, D. A., Fotiadi, A. A. & Taylor, J. R. Supermode noise mitigation and repetition rate control in a harmonic mode-locked fiber laser implemented through the pulse train interaction with co-lased CW radiation. Optics Letters 47, 5236–5239 (2022).

    ADS  Google Scholar 

  58. Moille, G., Stone, J., Chojnacky, M., Menyuk, C. & Srinivasan, K. Kerr-induced synchronization of a cavity soliton to an optical reference for integrated frequency comb clockworks. Preprint at https://arxiv.org/abs/2305.02825 (2023).

  59. Xu, Y. et al. Harmonic and rational harmonic driving of microresonator soliton frequency combs. Optica 7, 940–946 (2020).

    ADS  Google Scholar 

  60. Tong, Y. C., Chan, L. Y. & Tsang, H. K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electron. Lett. 33, 983–985 (1997).

    ADS  Google Scholar 

  61. Goda, K. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photon. 7, 102–112 (2013).

    ADS  Google Scholar 

  62. Runge, A. F. J., Broderick, N. G. R. & Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2, 36–39 (2015).

    ADS  Google Scholar 

  63. Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).

    ADS  Google Scholar 

  64. Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P. & Grelu, P. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, 243901 (2017).

    ADS  Google Scholar 

  65. Cole, D. C., Gatti, A., Papp, S. B., Prati, F. & Lugiato, L. Theory of Kerr frequency combs in Fabry-Perot resonators. Phys. Rev. A 98, 013831 (2018).

    ADS  Google Scholar 

  66. Hollenbeck, D. & Cantrell, C. D. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B 19, 2886–2892 (2002).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Marsden Fund of the Royal Society Te Apārangi of New Zealand, the Development of National Major Scientific Research Instrument from National Natural Science Foundation of China (61927816), the Introduced Innovative Team Project of Guangdong Pearl River Talents Program (2021ZT09Z109) and the Natural Science Foundation of Guangdong Province (2021B1515020074).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. performed all of the experiments and most of the simulations with the help of Y.X. and M.E. S.S. performed numerical simulations of soliton characteristics. X. Wen, W.W., X. Wei and Z.Y. fabricated the dielectric mirrors used in the resonators. S.C. assisted with the analysis of results. S.G.M. helped to supervise the experiments and interpret the results. M.E. supervised the overall project and wrote the paper with Z.L.

Corresponding author

Correspondence to Miro Erkintalo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Notes 1–4.

Supplementary Video 1

Animation that depicts the numerical evolution visualized in Fig. 2a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, Y., Shamailov, S. et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses. Nat. Photon. 18, 46–53 (2024). https://doi.org/10.1038/s41566-023-01303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01303-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing