Integrated optomechanical single-photon frequency shifter


The ability to manipulate single photons is of critical importance for fundamental quantum optics studies and practical implementations of quantum communications. While extraordinary progresses have been made in controlling spatial, temporal, spin and orbit angular momentum degrees of freedom1,2,3,4,5,6, frequency-domain control of single photons so far relies on nonlinear optical effects, which have faced obstacles such as noise photons, narrow bandwidth and demanding optical filtering7,8,9,10,11,12,13,14,15. Here, we demonstrate the first integrated optomechanical single-photon frequency shifter with near-unity efficiency. A frequency shift up to 150 GHz at telecom wavelength is realized without measurable added noise and the preservation of quantum coherence is verified through quantum interference between twin photons of different colours. This single-photon frequency shifter will be invaluable for increasing the channel capacity of quantum communications and compensating frequency mismatch between quantum systems, paving the road towards a hybrid quantum network.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Principles of frequency conversion.
Figure 2: Frequency conversion induced by mechanical motion.
Figure 3: Single-photon frequency control.
Figure 4: Quantum interference between two photons with different colours.


  1. 1

    Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

  2. 2

    Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012).

  3. 3

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

  4. 4

    Marcikic, I. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004).

  5. 5

    Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 5, 770–776 (2011).

  6. 6

    Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).

  7. 7

    Kumar, P. Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990).

  8. 8

    Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photon. 2, 35–38 (2008).

  9. 9

    McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

  10. 10

    Rakher, M. T., Ma, L., Slattery, O., Tang, X. & Srinivasan, K. Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion. Nat. Photon. 4, 786–791 (2010).

  11. 11

    Ikuta, R. et al. Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 1544 (2011).

  12. 12

    De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

  13. 13

    Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

  14. 14

    Clark, A. S., Shahnia, S., Collins, M. J., Xiong, C. & Eggleton, B. J. High-efficiency frequency conversion in the single-photon regime. Opt. Lett. 38, 947–949 (2013).

  15. 15

    Matsuda, N. Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2, e1501223 (2016).

  16. 16

    Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

  17. 17

    Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photon. 9, 363–373 (2015).

  18. 18

    Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

  19. 19

    Sallen, G. et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat. Photon. 4, 696–699 (2010).

  20. 20

    Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012).

  21. 21

    Liu, Y., Davanço, M., Aksyuk, V. & Srinivasan, K. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett. 110, 223603 (2013).

  22. 22

    Kuo, P. S. et al. Reducing noise in single-photon-level frequency conversion. Opt. Lett. 38, 1310–1312 (2013).

  23. 23

    Farías, D. A. & Eckstein, J. N. Coupled-mode analysis of an electrooptic frequency shifter. IEEE J. Quantum Electron. 39, 358–363 (2003).

  24. 24

    Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).

  25. 25

    Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007).

  26. 26

    Tanabe, T., Notomi, M., Taniyama, H. & Kuramochi, E. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009).

  27. 27

    Fan, L., Fong, K. Y., Poot, M. & Tang, H. X. Cascaded optical transparency in multimode-cavity optomechanical systems. Nat. Commun. 6, 5850 (2015).

  28. 28

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2246 (1987).

  29. 29

    Bachor, H. A. & Ralph, T. C. A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004).

  30. 30

    Wright, L. J., Karpinski, M., Soller, C. & Smith, B. J. Spectral shearing of quantum light pulses by electro-optic phase modulation. Preprint at (2016).

Download references


We acknowledge funding support from an LPS/ARO grant (W911NF-14-1-0563), Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant (FA9550-15-1-0029), Defense Advanced Research Projects Agency (DARPA) Optical Radiation Cooling and Heating in Integrated Devices programme (ORCHID) through a grant from Air Force Office of Scientific Research (FA9550-10-1-0297), and the Packard Foundation. Facilities used were supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE) and the National Science Foundation (NSF) Materials Research Science and Engineering Centers (MRSEC) Division of Materials Research (DMR) 1119826. The authors acknowledge L. Jiang and L. Li for discussion. The authors thank M. Power and M. Rooks for assistance in device fabrication.

Author information




H.X.T., L.F. and C.-L.Z. conceived the experiment; L.F., R.C. and X.H. fabricated the device; L.F., M.P., R.C. and X.G. performed the measurements; L.F. and C.-L.Z. analysed the data. L.F. and C.-L.Z. wrote the manuscript, and all authors contributed to the manuscript. H.X.T. supervised the work.

Corresponding author

Correspondence to Hong X. Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 442 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zou, C., Poot, M. et al. Integrated optomechanical single-photon frequency shifter. Nature Photon 10, 766–770 (2016).

Download citation

Further reading