Hologram of a single photon

Abstract

The spatial structure of single photons1,2,3 is becoming an extensively explored resource to facilitate free-space quantum communication4,5,6,7 and quantum computation8 as well as for benchmarking the limits of quantum entanglement generation3 with orbital angular momentum modes1,9 or reduction of the photon free-space propagation speed10. Although accurate tailoring of the spatial structure of photons is now routinely performed using methods employed for shaping classical optical beams3,10,11, the reciprocal problem of retrieving the spatial phase-amplitude structure of an unknown single photon cannot be solved using complementary classical holography techniques12,13 that are known for excellent interferometric precision. Here, we introduce a method to record a hologram of a single photon that is probed by another reference photon, on the basis of a different concept of the quantum interference between two-photon probability amplitudes. As for classical holograms, the hologram of a single photon encodes the full information about the photon's ‘shape’ (that is, its quantum wavefunction) whose local amplitude and phase are retrieved in the demonstrated experiment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum interference of two spatially structured photons.
Figure 2: Encoding of the local phase of the quantum wavefunction in the HSP.
Figure 3: Experimental set-up for measuring the HSP.
Figure 4: Measured and reconstructed HSP and the full retrieval of the encoded quantum wavefunction.

References

  1. 1

    Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. & Bamber, C. Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011).

    Article  Google Scholar 

  3. 3

    Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    ADS  Article  Google Scholar 

  4. 4

    Walborn, S. P., Lemelle, D. S., Almeida, M. P. & Ribeiro, P. H. S. Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Krenn, M., Handsteiner, J., Fink, M., Fickler, R. & Zeilinger, A. Twisted photon entanglement through turbulent air across Vienna. Proc. Natl Acad. Sci. USA 112, 14197–14201 (2015).

    ADS  Article  Google Scholar 

  8. 8

    Abouraddy, A. F., Di Giuseppe, G., Yarnall, T. M., Teich, M. C. & Saleh, B. E. A. Implementing one-photon three-qubit quantum gates using spatial light modulators. Phys. Rev. A 86, 050303 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Nagali, E. et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nature Photon. 3, 720–723 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Giovannini, D. et al. Spatially structured photons that travel in free space slower than the speed of light. Science 347, 857–860 (2015).

    ADS  Article  Google Scholar 

  11. 11

    Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

    ADS  Article  Google Scholar 

  12. 12

    Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    ADS  Article  Google Scholar 

  13. 13

    Collier, R. J., Burckhardt, C. B. & Lin, L. H. Optical Holography (Academic, 1971).

    Google Scholar 

  14. 14

    Lvovsky, A. I. et al. Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402 (2001).

    ADS  Article  Google Scholar 

  15. 15

    Smith, B. J., Killett, B., Raymer, M. G., Walmsley, I. a. & Banaszek, K. Measurement of the transverse spatial quantum state of light at the single-photon level. Opt. Lett. 30, 3365–3367 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Mirhosseini, M., Magaña-Loaiza, O. S., Hashemi Rafsanjani, S. M. & Boyd, R. W. Compressive direct measurement of the quantum wave function. Phys. Rev. Lett. 113, 090402 (2014).

    ADS  Article  Google Scholar 

  17. 17

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Article  Google Scholar 

  18. 18

    Jachura, M. & Chrapkiewicz, R. Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified sCMOS camera. Opt. Lett. 40, 1540–1543 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Kaltenbaek, R., Blauensteiner, B., Żukowski, M., Aspelmeyer, M. & Zeilinger, A. Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Bennett, A. J., Patel, R. B., Nicoll, C. A., Ritchie, D. A. & Shields, A. J. Interference of dissimilar photon sources. Nature Phys. 5, 715–717 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Servin, M., Marroquin, J. L. & Cuevas, F. J. Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl. Opt. 36, 4540–4548 (1997).

    ADS  Article  Google Scholar 

  23. 23

    Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

    Article  Google Scholar 

  24. 24

    Specht, H. P. et al. Phase shaping of single-photon wave packets. Nature Photon. 3, 469–472 (2009).

    ADS  Article  Google Scholar 

  25. 25

    Beduini, F. A., Zielińska, J. A., Lucivero, V. G., de Icaza Astiz, Y. A. & Mitchell, M. W. Interferometric measurement of the biphoton wave function. Phys. Rev. Lett. 113, 183602 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Polycarpou, C., Cassemiro, K. N., Venturi, G., Zavatta, A. & Bellini, M. Adaptive detection of arbitrarily shaped ultrashort quantum light states. Phys. Rev. Lett. 109, 053602 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Wasilewski, W., Kolenderski, P. & Frankowski, R. Spectral density matrix of a single photon measured. Phys. Rev. Lett. 99, 123601 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Lopes, R. et al. Atomic Hong–Ou–Mandel experiment. Nature 520, 66–68 (2015).

    ADS  Article  Google Scholar 

  29. 29

    Chrapkiewicz, R., Wasilewski, W. & Banaszek, K. High-fidelity spatially resolved multiphoton counting for quantum imaging applications. Opt. Lett. 39, 5090–5093 (2014).

    ADS  Article  Google Scholar 

  30. 30

    Peeters, W., Renema, J. & van Exter, M. Engineering of two-photon spatial quantum correlations behind a double slit. Phys. Rev. A 79, 043817 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Bennink, R. S., Bentley, S. J., Boyd, R. W. & Howell, J. C. Quantum and classical coincidence imaging. Phys. Rev. Lett. 92, 033601 (2004).

    ADS  Article  Google Scholar 

  32. 32

    Morris, P. A., Aspden, R. S., Bell, J. E. C., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nature Commun. 6, 5913 (2015).

    ADS  Article  Google Scholar 

  33. 33

    Fickler, R., Krenn, M., Łapkiewicz, R., Ramelow, S. & Zeilinger, A. Real-time imaging of quantum entanglement. Sci. Rep. 3, 1914 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Rozema, L. a. et al. Scalable spatial superresolution using entangled photons. Phys. Rev. Lett. 112, 223602 (2014).

    ADS  Article  Google Scholar 

  35. 35

    Allman, M. S. et al. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl. Phys. Lett. 106, 192601 (2015).

    ADS  Article  Google Scholar 

  36. 36

    John, J. J. et al. PImMS, a fast event-triggered monolithic pixel detector with storage of multiple timestamps. J. Instrum. 7, C08001 (2012).

    Article  Google Scholar 

  37. 37

    Just, F. et al. Detection of non-classical space-time correlations with a novel type of single-photon camera. Opt. Express 22, 17561–17572 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge insightful comments and discussion about the work and the manuscript with M. Barbieri, R. Łapkiewicz, M.J. Padgett and A. Zeilinger. This project was financed by the National Science Centre (grant no. DEC-2013/09/N/ST2/02229 and DEC-2011/03/D/ST2/01941). R.C. was supported by Foundation for Polish Science. M.J and K.B. were supported by the European Commission under the Seventh Framework Programme for Research and Technological Development integrated project Simulations and Interfaces with Quantum Systems (grant agreement no. 600645) co-financed by the Polish Ministry of Science and Higher Education.

Author information

Affiliations

Authors

Contributions

W.W. proposed the idea of wavefunction phase retrieval. R.C. designed and programmed the experiment, developed HSP methods, analysed the data and prepared figures. M.J. built the set-up and performed the measurements. R.C. and M.J. wrote the manuscript assisted by W.W. and K.B, who supervised the work and contributed to data analysis.

Corresponding author

Correspondence to Michał Jachura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1691 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chrapkiewicz, R., Jachura, M., Banaszek, K. et al. Hologram of a single photon. Nature Photon 10, 576–579 (2016). https://doi.org/10.1038/nphoton.2016.129

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing