Abstract

Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s−1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Frequency-agile, rapid scanning spectroscopy. Nature Photon. 7, 532–534 (2013).

  2. 2.

    & Dispersive Fourier transformation for fast continuous single-shot measurements. Nature Photon. 7, 102–112 (2013).

  3. 3.

    et al. High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. Opt. Express 15, 15115–15128 (2007).

  4. 4.

    Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

  5. 5.

    , & Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

  6. 6.

    et al. Adaptive real-time dual-comb spectroscopy. Nature Commun. 5, 3375 (2014).

  7. 7.

    et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

  8. 8.

    et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55–57 (2010).

  9. 9.

    , & Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

  10. 10.

    et al. Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011).

  11. 11.

    , , & Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nature Commun. 5, 5192 (2014).

  12. 12.

    et al. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt. Lett. 39, 2688–2690 (2014).

  13. 13.

    , , & Dual-comb architecture for fast spectroscopic measurements and spectral characterization. IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).

  14. 14.

    , & Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 3, 99–102 (2009).

  15. 15.

    et al. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Phys. Rev. A 91, 012505 (2015).

  16. 16.

    , & Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

  17. 17.

    et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

  18. 18.

    , & Wide span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29, 2693–2701 (1993).

  19. 19.

    , , & Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn J. Appl. Phys. 40, L878 (2001).

  20. 20.

    , , & Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008).

  21. 21.

    Nonlinear Fiber Optics 5th edn (Academic, 2013).

  22. 22.

    & Fourier Transform Infrared Spectroscopy 2nd edn (Wiley-Interscience, 2007).

  23. 23.

    , , , & Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

  24. 24.

    et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectr. Rad. Transfer 130, 4–50 (2013).

  25. 25.

    & Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a (Special Publication 260-133, National Institute of Standards and Technology, 2001).

  26. 26.

    , & Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

  27. 27.

    , & Controllable spatiotemporal nonlinear effects in multimode fibres. Nature Photon. 9, 306–310 (2015).

  28. 28.

    , , & Self-similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007).

  29. 29.

    , , & Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express 21, 6045–6052 (2013).

  30. 30.

    & Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev. 8, 368–393 (2014).

  31. 31.

    et al. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt. Express 20, 3331–3344 (2012).

  32. 32.

    et al. Wideband parametric frequency comb as coherent optical carrier. J. Lightw. Technol. 31, 3414–3419 (2013).

  33. 33.

    et al. Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping. J. Lightw. Technol. 32, 840–846 (2014).

  34. 34.

    et al. Low-noise parametric frequency comb for continuous C-plus-L-band 16-QAM channels generation. Opt. Express 22, 6822–6828 (2014).

Download references

Acknowledgements

The authors thank J. Fatome, G. Fanjoux, C. Finot and P. Morin for discussions and advice. The authors acknowledge financial support from IXCORE Fondation pour la Recherche, PARI PHOTCOM Région Bourgogne, Labex ACTION, the French National Research Agency (ANR-12-BS04-0011 OPTIROC), FP7-ERC-Multicomb (Grant 267854) and the Munich Center for Advanced Photonics.

Author information

Affiliations

  1. Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS – Univ. Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon F-21078, France

    • Guy Millot
    • , Stéphane Pitois
    • , Tatevik Hovhannisyan
    •  & Abdelkrim Bendahmane
  2. Ludwig-Maximilians-Universität München, Fakultät für Physik, Schellingstrasse 4/III, Munich D-80799, Germany

    • Ming Yan
    • , Theodor W. Hänsch
    •  & Nathalie Picqué
  3. Max-Planck-Institut für Quantenoptik, Hans-Kopfermannstrasse 1, Garching D-85748, Germany

    • Ming Yan
    • , Theodor W. Hänsch
    •  & Nathalie Picqué
  4. Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay F-91405, France

    • Nathalie Picqué

Authors

  1. Search for Guy Millot in:

  2. Search for Stéphane Pitois in:

  3. Search for Ming Yan in:

  4. Search for Tatevik Hovhannisyan in:

  5. Search for Abdelkrim Bendahmane in:

  6. Search for Theodor W. Hänsch in:

  7. Search for Nathalie Picqué in:

Contributions

All authors contributed significantly to this work.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Guy Millot or Nathalie Picqué.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2015.250

Further reading