Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites

Abstract

Organic–inorganic metal halide perovskites have demonstrated high power conversion efficiencies in solar cells and promising performance in a wide range of optoelectronic devices. The existence and stability of bound electron–hole pairs in these materials and their role in the operation of devices with different architectures remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modelling as a function of the degree of polycrystallinity and temperature, that the electron–hole interaction is sensitive to the microstructure of the material. The long-range order is disrupted by polycrystalline disorder and the variations in electrostatic potential found for smaller crystals suppress exciton formation, while larger crystals of the same composition demonstrate an unambiguous excitonic state. We conclude that fabrication procedures and morphology strongly influence perovskite behaviour, with both free carrier and excitonic regimes possible, with strong implications for optoelectronic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Temperature-dependent transient absorption spectra of MAPbI3 meso phase and capping layer.
Figure 2: Photo-induced excited population of MAPbI3 as a function of crystal size.
Figure 3: Photo-induced excited population of MAPbBr3 as a function of crystal size.
Figure 4: Multiscale numerical Monte Carlo simulations of dipole alignment in methylammonium lead iodide.

References

  1. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  2. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  3. Xing, G., Mathews, N., Lim, S. & Yantara, N. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  4. Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  Google Scholar 

  5. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Mater. 14, 636–642 (2015).

    Article  ADS  Google Scholar 

  6. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  7. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013).

    Article  Google Scholar 

  8. De Bastiani, M., D'Innocenzo, V., Stranks, S. D., Snaith, H. J. & Petrozza, A. Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites. APL Mater. 2, 081509 (2014).

    Article  ADS  Google Scholar 

  9. Grancini, G. et al. The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5, 3836–3842 (2014).

    Article  Google Scholar 

  10. Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photon. 8, 250–255 (2014).

    Article  ADS  Google Scholar 

  11. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nature Photon. 8, 737–743 (2014).

    Article  ADS  Google Scholar 

  12. D'Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Commun. 5, 3486 (2014).

    Article  Google Scholar 

  13. D'Innocenzo, V., Srimath Kandada, A. R., De Bastiani, M., Gandini, M. & Petrozza, A. Tuning the light emission properties by band gap engineering in hybrid lead-halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014).

    Article  Google Scholar 

  14. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nature Photon. 9, 106–112 (2014).

    Article  ADS  Google Scholar 

  15. Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nature Commun. 5, 5049 (2014).

    Article  ADS  Google Scholar 

  16. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in an organic–inorganic tri-halide perovskite. Nature Phys. 11, 582–587 (2015).

    Article  ADS  Google Scholar 

  17. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  18. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  19. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  ADS  Google Scholar 

  20. Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotech. 9, 927–932 (2014).

    Article  ADS  Google Scholar 

  21. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  22. Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967).

    Article  ADS  Google Scholar 

  23. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51, 1383–1395 (1990).

    Article  ADS  Google Scholar 

  24. Shimizu, M., Fujisawa, J.-I. & Ishi-Hayase, J. Influence of dielectric confinement on excitonic nonlinearity in inorganic–organic layered semiconductors. Phys. Rev. B 71, 205306 (2005).

    Article  ADS  Google Scholar 

  25. Hulin, D. et al. Well-size dependence of exciton blue shift in GaAs multiple-quantum-well structures. Phys. Rev. B 33, 4389–4391 (1986).

    Article  ADS  Google Scholar 

  26. Peyghambarian, N. et al. Blue shift of the exciton resonance due to exciton–exciton interactions in a multiple-quantum-well structure. Phys. Rev. Lett. 53, 2433–2436 (1984).

    Article  ADS  Google Scholar 

  27. Schmitt-Rink, S., Chemla, D. & Miller, D. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32, 6601–6609 (1985).

    Article  ADS  Google Scholar 

  28. Wu, X., Trinh, M. T. & Zhu, X. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. C 119, 14714–14721 (2015).

    Article  Google Scholar 

  29. Quarti, C., Grancini, G. & Mosconi, E. The raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014).

    Article  Google Scholar 

  30. Even, J. et al. Solid-state physics perspective on hybrid perovskite semiconductors. J. Phys. Chem. C 119, 10161–10177 (2015).

    Article  Google Scholar 

  31. Heo, J. H., Song, D. H. & Im, S. H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014).

    Article  Google Scholar 

  32. Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4, 897–902 (2013).

    Article  Google Scholar 

  33. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003).

    Article  ADS  Google Scholar 

  34. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2014).

    Article  Google Scholar 

  35. Sadhanala, A. & Deschler, F. Preparation of single-phase films of CH3NH3Pb(I1–xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

    Article  Google Scholar 

  36. Mosconi, E., Quarti, C., Ivanovska, T., Ruani, G. & De Angelis, F. Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Phys. Chem. Chem. Phys. 16, 16137–16144 (2014).

    Article  Google Scholar 

  37. Wasylishen, R., Knop, O. & Macdonald, J. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985).

    Article  ADS  Google Scholar 

  38. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987).

    Article  ADS  Google Scholar 

  39. Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604032 of the MESO project, under grant agreement 316494 (DESTINY), the EU Horizon 2020 Research and Innovation Programme under grant agreement no. 643238 (SYNCHRONICS) and from Fondazione Cariplo (project GREENS no. 2013-0656). J.M.F. is funded by the EPSRC (EP/K016288/ and EP/M009580/1), and A.W. is supported by the European Research Council (project no. 277757). The authors thank S. Neutzner for help with fs-TA experiments and W. Xu for help with sample preparation. The authors thank E.T. Hoke, E.R. Dohner and H. Karunadasa for discussions and for providing the single crystal. The authors thank L. Manna for discussions and access to the XRD facility.

Author information

Authors and Affiliations

Authors

Contributions

G.G., A.R.S.K. and A.J.B. performed the transient absorption measurements. M.G. and M.D.B. prepared the samples and characterized them by SEM. S.M. performed XRD and SEM characterization. G.G., A.R.S.K., G.L. and A.P. analysed the optical spectroscopy data. J.M.F. and A.W. performed the multiscale modelling and analysed the results. The manuscript was written with contributions from all authors. A.P. supervised the project.

Corresponding author

Correspondence to Annamaria Petrozza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1747 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grancini, G., Srimath Kandada, A., Frost, J. et al. Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nature Photon 9, 695–701 (2015). https://doi.org/10.1038/nphoton.2015.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing