Letter | Published:

A photon–photon collider in a vacuum hohlraum

Nature Photonics volume 8, pages 434436 (2014) | Download Citation

Abstract

The ability to create matter from light is amongst the most striking predictions of quantum electrodynamics. Experimental signatures of this have been reported in the scattering of ultra-relativistic electron beams with laser beams1,2, intense laser–plasma interactions3 and laser-driven solid target scattering4. However, all such routes involve massive particles. The simplest mechanism by which pure light can be transformed into matter, Breit–Wheeler pair production (γγ′ → e+e)5, has never been observed in the laboratory. Here, we present the design of a new class of photon–photon collider in which a gamma-ray beam is fired into the high-temperature radiation field of a laser-heated hohlraum. Matching experimental parameters to current-generation facilities, Monte Carlo simulations suggest that this scheme is capable of producing of the order of 105 Breit–Wheeler pairs in a single shot. This would provide the first realization of a pure photon–photon collider, representing the advent of a new type of high-energy physics experiment.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626–1629 (1997).

  2. 2.

    et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999).

  3. 3.

    et al. Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77, 2662–2664 (2000).

  4. 4.

    et al. Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001 (2009).

  5. 5.

    & Collision of two light quanta. Phys. Rev. 46, 1087–1091 (1934).

  6. 6.

    & On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. Lond. A 146, 83–112 (1934).

  7. 7.

    On the annihilation of electrons and protons. Proc. Camb. Phil. Soc. 26, 361–375 (1930).

  8. 8.

    , & Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1–140 (2010).

  9. 9.

    Absorption of high-energy photons in the universe. Sov. Phys. JETP 14, 393–394 (1962).

  10. 10.

    & On possible observable effects of electron pair-production in QSOs. Mon. Not. R. Astron. Soc. 152, 21–35 (1971).

  11. 11.

    et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012).

  12. 12.

    , & Complete QED theory of multiphoton trident pair production in strong laser fields. Phys. Rev. Lett. 105, 080401 (2010).

  13. 13.

    & High energy photon–photon collisions. Nucl. Instrum. Meth. Phys. Res. A 355, 19–41 (1995).

  14. 14.

    et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams. Phys. Rev. Lett 110, 255002 (2013).

  15. 15.

    et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339–491 (2004).

  16. 16.

    et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

  17. 17.

    et al. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103, 035002 (2009).

  18. 18.

    et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010).

  19. 19.

    et al. (Particle Data Group). Review of particle physics. Phys. Rev. D 86, 010001 (2012).

  20. 20.

    Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815–851 (1974).

  21. 21.

    & Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev. Mod. Phys. 78, 591–640 (2006).

  22. 22.

    Mean square angles of bremsstrahlung and pair production. Phys. Rev. 76, 836–839 (1949).

  23. 23.

    Molière's theory of multiple scattering. Phys. Rev. 89, 1256–1266 (1953).

  24. 24.

    et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments. Phys. Plasmas 18, 056302 (2011).

  25. 25.

    et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004 (2011).

  26. 26.

    et al. Hohlraum radiation drive measurements on the Omega laser. Phys. Rev. Lett. 79, 1491–1494 (1997).

  27. 27.

    , & Theory of Compton scattering in ignited thermonuclear plasmas. J. Opt. Soc. Am. B 25, 167–174 (2008).

  28. 28.

    & Pair production in photon–photon collisions. Phys. Rev. 155, 1404–1407 (1967).

  29. 29.

    & Observing light-by-light scattering at the Large Hadron Collider. Phys. Rev. Lett. 111, 080405 (2013).

  30. 30.

    Suppression of bremsstrahlung and pair production due to environmental factors. Rev. Mod. Phys. 71, 1501–1538 (1999).

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council, the John Adams Institute (STFC) and the Atomic Weapons Establishment, Aldermaston. The authors thank A. Di Piazza and C.H. Keitel for helpful comments.

Author information

Affiliations

  1. Blackett Laboratory, Imperial College, London SW7 2AZ, UK

    • O. J. Pike
    • , F. Mackenroth
    • , E. G. Hill
    •  & S. J. Rose
  2. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany

    • F. Mackenroth

Authors

  1. Search for O. J. Pike in:

  2. Search for F. Mackenroth in:

  3. Search for E. G. Hill in:

  4. Search for S. J. Rose in:

Contributions

O.J.P. and E.G.H. initially proposed the collider concept and, together with F.M., developed the experimental scheme. O.J.P. and F.M. performed the analysis and wrote the manuscript. O.J.P. carried out the Monte Carlo simulations. S.J.R. guided the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to O. J. Pike.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.95