Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A photon–photon collider in a vacuum hohlraum

Abstract

The ability to create matter from light is amongst the most striking predictions of quantum electrodynamics. Experimental signatures of this have been reported in the scattering of ultra-relativistic electron beams with laser beams1,2, intense laser–plasma interactions3 and laser-driven solid target scattering4. However, all such routes involve massive particles. The simplest mechanism by which pure light can be transformed into matter, Breit–Wheeler pair production (γγ′ → e+e)5, has never been observed in the laboratory. Here, we present the design of a new class of photon–photon collider in which a gamma-ray beam is fired into the high-temperature radiation field of a laser-heated hohlraum. Matching experimental parameters to current-generation facilities, Monte Carlo simulations suggest that this scheme is capable of producing of the order of 105 Breit–Wheeler pairs in a single shot. This would provide the first realization of a pure photon–photon collider, representing the advent of a new type of high-energy physics experiment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the photon–photon collider.
Figure 2: High-energy photons emitted from the back surface of the gold target.
Figure 3: Positrons produced via photon–photon scattering in the hohlraum.

References

  1. Burke, D. L. et al. Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626–1629 (1997).

    Article  ADS  Google Scholar 

  2. Bamber, C. et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999).

    Article  ADS  Google Scholar 

  3. Gahn, C. et al. Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77, 2662–2664 (2000).

    Article  ADS  Google Scholar 

  4. Chen, H. et al. Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001 (2009).

    Article  ADS  Google Scholar 

  5. Breit, G. & Wheeler, J. A. Collision of two light quanta. Phys. Rev. 46, 1087–1091 (1934).

    Article  ADS  Google Scholar 

  6. Bethe, H. & Heitler, W. On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. Lond. A 146, 83–112 (1934).

    Article  ADS  Google Scholar 

  7. Dirac, P. A. M. On the annihilation of electrons and protons. Proc. Camb. Phil. Soc. 26, 361–375 (1930).

    Article  ADS  Google Scholar 

  8. Ruffini, R., Vereshchagin, G. & Xue, S.-S. Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1–140 (2010).

    Article  ADS  Google Scholar 

  9. Nikishov, A. I. Absorption of high-energy photons in the universe. Sov. Phys. JETP 14, 393–394 (1962).

    Google Scholar 

  10. Bonometto, S. & Rees, M. J. On possible observable effects of electron pair-production in QSOs. Mon. Not. R. Astron. Soc. 152, 21–35 (1971).

    Article  ADS  Google Scholar 

  11. Di Piazza, A. et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012).

    Article  ADS  Google Scholar 

  12. Hu, H., Müller, C. & Keitel, C. H. Complete QED theory of multiphoton trident pair production in strong laser fields. Phys. Rev. Lett. 105, 080401 (2010).

    Article  ADS  Google Scholar 

  13. Brodsky, S. J. & Zerwas, P. M. High energy photon–photon collisions. Nucl. Instrum. Meth. Phys. Res. A 355, 19–41 (1995).

    Article  ADS  Google Scholar 

  14. Sarri, G. et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams. Phys. Rev. Lett 110, 255002 (2013).

    Article  ADS  Google Scholar 

  15. Lindl, J. D. et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339–491 (2004).

    Article  ADS  Google Scholar 

  16. Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

    Article  ADS  Google Scholar 

  17. Kneip, S. et al. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103, 035002 (2009).

    Article  ADS  Google Scholar 

  18. Clayton, C. E. et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010).

    Article  ADS  Google Scholar 

  19. Beringer, J. et al. (Particle Data Group). Review of particle physics. Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  20. Tsai, Y.-S. Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815–851 (1974).

    Article  ADS  Google Scholar 

  21. Marklund, M. & Shukla, P. K. Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev. Mod. Phys. 78, 591–640 (2006).

    Article  ADS  Google Scholar 

  22. Stearns, M. Mean square angles of bremsstrahlung and pair production. Phys. Rev. 76, 836–839 (1949).

    Article  ADS  Google Scholar 

  23. Bethe, H. A. Molière's theory of multiple scattering. Phys. Rev. 89, 1256–1266 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  24. Town, R. P. J. et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments. Phys. Plasmas 18, 056302 (2011).

    Article  ADS  Google Scholar 

  25. Glenzer, S. H. et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004 (2011).

    Article  ADS  Google Scholar 

  26. Decker, C. et al. Hohlraum radiation drive measurements on the Omega laser. Phys. Rev. Lett. 79, 1491–1494 (1997).

    Article  ADS  Google Scholar 

  27. Hartemann, F. V., Siders, C. W. & Barty, C. P. J. Theory of Compton scattering in ignited thermonuclear plasmas. J. Opt. Soc. Am. B 25, 167–174 (2008).

    Article  Google Scholar 

  28. Gould, R. J. & Schréder, G. P. Pair production in photon–photon collisions. Phys. Rev. 155, 1404–1407 (1967).

    Article  ADS  Google Scholar 

  29. D'Enterria, D. & da Silveira, G. G. Observing light-by-light scattering at the Large Hadron Collider. Phys. Rev. Lett. 111, 080405 (2013).

    Article  ADS  Google Scholar 

  30. Klein, S. Suppression of bremsstrahlung and pair production due to environmental factors. Rev. Mod. Phys. 71, 1501–1538 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council, the John Adams Institute (STFC) and the Atomic Weapons Establishment, Aldermaston. The authors thank A. Di Piazza and C.H. Keitel for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

O.J.P. and E.G.H. initially proposed the collider concept and, together with F.M., developed the experimental scheme. O.J.P. and F.M. performed the analysis and wrote the manuscript. O.J.P. carried out the Monte Carlo simulations. S.J.R. guided the project.

Corresponding author

Correspondence to O. J. Pike.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pike, O., Mackenroth, F., Hill, E. et al. A photon–photon collider in a vacuum hohlraum. Nature Photon 8, 434–436 (2014). https://doi.org/10.1038/nphoton.2014.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.95

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing