Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A long-range polarization-controlled optical tractor beam


The laser beam has become an indispensable tool for the controllable manipulation and transport of microscopic objects in biology, physical chemistry and condensed matter physics. In particular, ‘tractor’ laser beams can draw matter towards a laser source and perform, for instance, all-optical remote sampling. Recent advances in lightwave technology have already led to small-scale experimental demonstrations of tractor beams1,2,3,4. However, the realization of long-range tractor beams has not gone beyond the realm of theoretical investigations5,6,7,8,9. Here, we demonstrate the stable transfer of gold-coated hollow glass spheres against the power flow of a single inhomogeneously polarized laser beam over tens of centimetres. Additionally, by varying the polarization state of the beam we can stop the spheres or reverse the direction of their motion at will.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of photophoretic light–particle interaction in gases.
Figure 2: Numerical modelling of reversible optical transport.
Figure 3: Experiment.


  1. Lee, S-H., Roichman, Y. & Grier, D. Optical solenoid beams. Opt. Express 18, 6988–6993 (2010).

    Article  ADS  Google Scholar 

  2. Ruffner, D. B. & Grier, D. G. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109, 163903 (2012).

    Article  ADS  Google Scholar 

  3. Brzobohatý, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nature Photon. 7, 123–127 (2013).

    Article  ADS  Google Scholar 

  4. Kajorndejnukul, V., Ding, W., Sukhov, S. & Dogariu, A. Linear momentum increase and negative optical forces at dielectric interface. Nature Photon. 7, 787–790 (2013).

    Article  ADS  Google Scholar 

  5. Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518–3524 (2006).

    Article  ADS  Google Scholar 

  6. Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

    Article  ADS  Google Scholar 

  7. Saenz, J. Laser tractor beams. Nature Photon. 5, 514–515 (2011).

    Article  ADS  Google Scholar 

  8. Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nature Photon. 5, 531–534 (2011).

    Article  ADS  Google Scholar 

  9. Dogariu, A., Sukhov, S. & Sáenz, J. J. Optically induced ‘negative forces’. Nature Photon. 7, 24–27 (2013).

    Article  ADS  Google Scholar 

  10. Gahagan, K. T. & Swartzlander Jr., G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996).

    Article  ADS  Google Scholar 

  11. Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 1–28 (2013).

    Article  Google Scholar 

  12. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  13. Ashkin, A. & Dziedzic, J. M. Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333–335 (1976).

    Article  ADS  Google Scholar 

  14. Peterman, E. J. G., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  ADS  Google Scholar 

  15. Preining, O. in Aerosol Science (ed. Davies, C. N.) Ch. V, 111–135 (Academic, 1966).

    Google Scholar 

  16. Phuoc, T. X. A comparative study of the photon pressure force, the photophoretic force, and the adhesion von der Waals force. Opt. Commun. 245, 27–35 (2005).

    Article  ADS  Google Scholar 

  17. Rohatschek, H. Semi-empirical model of photophoretic forces for the entire range of pressures. J. Aerosol Sci. 26, 717–734 (1995).

    Article  ADS  Google Scholar 

  18. Wurm, G. & Krauss, O. Dust eruptions by photophoresis and solid state greenhouse effects. Phys. Rev. Lett. 96, 134301 (2006).

    Article  ADS  Google Scholar 

  19. Yalamov, Yu. I., Kutukov, V. B. & Shchukin, E. R. Theory of the photophoretic motion of the large-size volatile aerosol particle. J. Colloid Interface Sci. 57, 564–571 (1976).

    Article  ADS  Google Scholar 

  20. Hidy, G. M. & Brock, J. R. Photophoresis and the descent of particles into the lower stratosphere. J. Geophys. Res. 72, 455–460 (1967).

    Article  ADS  Google Scholar 

  21. Shvedov, V. G. et al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).

    Article  ADS  Google Scholar 

  22. Mackowski, D. W. Photophoresis of aerosol particles in the free molecular and slip-flow regimes. Int. J. Heat Mass Transfer 32, 843–854 (1989).

    Article  Google Scholar 

  23. Zulehner, W. & Rohatschek, H. Representation and calculation of photophoretic forces and torques. J. Aerosol Sci. 26, 201–210 (1995).

    Article  ADS  Google Scholar 

  24. Yalamov, Yu. I. & Khasanov, A. S. Photophoresis of coarse aerosol particles with nonuniform thermal conductivity. Tech. Phys. 43, 347–352 (1998).

    Article  Google Scholar 

  25. Dusel, P. W., Kerker, M. & Cooke, D. D. Distribution of absorption centers within irradiated spheres. J. Opt. Soc. Am. 69, 55–59 (1979).

    Article  ADS  Google Scholar 

  26. Esseling, M., Rose, P., Alpmann, C. & Denz, C. Photophoretic trampoline—interaction of single airborne absorbing droplets with light. Appl. Phys. Lett. 101, 131115 (2012).

    Article  ADS  Google Scholar 

  27. Shvedov, V. G., Hnatovsky, C., Rode, A. V. & Krolikowski, W. Robust trapping and manipulation of airborne particles with a bottle beam. Opt. Express 19, 17350–17356 (2011).

    Article  ADS  Google Scholar 

  28. Shvedov, V. G., Hnatovsky, C., Eckerskorn, N., Rode, A. V. & Krolikowski, W. Polarization-sensitive photophoresis. Appl. Phys. Lett. 101, 051106 (2012).

    Article  ADS  Google Scholar 

  29. Soong, C. Y., Li, W. K., Liu, C. H. & Tzeng, P. Y. Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Opt. Express 18, 2168–2182 (2010).

    Article  ADS  Google Scholar 

  30. Rakic, A. D., Djurisic, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronics devices. Appl. Opt. 37, 5271–5283 (1998).

    Article  ADS  Google Scholar 

Download references


The authors acknowledge support from the Australian Research Council.

Author information

Authors and Affiliations



V.S. conceived the idea. V.S., C.H. and W.K. designed and conducted the experiments. A.R.D. and N.E. developed the theoretical description. A.R.D. performed the numerical simulations. C.H. and V.S. co-wrote the paper. W.K. supervised the project. All authors contributed to the discussion and data analysis.

Corresponding author

Correspondence to Wieslaw Krolikowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvedov, V., Davoyan, A., Hnatovsky, C. et al. A long-range polarization-controlled optical tractor beam. Nature Photon 8, 846–850 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing