Letter | Published:

X-ray two-photon absorption competing against single and sequential multiphoton processes

Nature Photonics volume 8, pages 313316 (2014) | Download Citation

Abstract

The success1,2 of X-ray free-electron lasers (XFELs) has extended the frontier of nonlinear optics into the hard X-ray region. Recently, sum-frequency generation3 has been reported, as well as parametric downconversion4,5,6. These are of the lowest (second) order, and higher-order processes remain unexplored. Here, we report the first observation of a third-order process: two-photon absorption of a 5.6 keV XFEL beam by germanium. We find that two-photon absorption competes with single and sequential multiphoton processes7,8, but we successfully determine the intrinsic cross-section by analysing the pulse-energy dependence. We also discuss the two-photon absorption cross-section by comparing a new mechanism unique to X-rays with the conventional mechanism and show that the latter is consistent with the present result. The experimental determination and understanding of the cross-section would allow two-photon absorption spectroscopy. Our result indicates that X-ray analogues of other third-order nonlinear optical processes9, such as nonlinear Raman and optical Kerr effects, are available for XFEL applications in spectroscopy, imaging and beam control.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. First lasing and operation of an Angstrom wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

  2. 2.

    et al. A compact X-ray free-electron laser emitting in the sub-Ångström region. Nature Photon. 6, 540–544 (2012).

  3. 3.

    et al. X-ray and optical wave mixing. Nature 488, 603–608 (2012).

  4. 4.

    & X-ray parametric conversion. Phys. Rev. Lett. 26, 684–688 (1971).

  5. 5.

    (ed.) Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-rays (Kluwer Academic, 2003).

  6. 6.

    , , & Visualizing the local optical response to extreme-ultraviolet radiation with a resolution of λ/380. Nature Phys. 7, 705–708 (2011).

  7. 7.

    et al. Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses. Phys. Rev. Lett. 110, 173005 (2013).

  8. 8.

    et al. Double core–hole creation by sequential attosecond photo-ionization. Phys. Rev. Lett. 111, 043001 (2013).

  9. 9.

    Nonlinear Optics (Academic Press, 2003).

  10. 10.

    et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011).

  11. 11.

    & Two-photon excitation-ionization of the 1s shell of highly charged positive atomic ions. J. Phys. B 34, 4857–4863 (2001).

  12. 12.

    , , & Enhanced nonlinear response of Ne8+ to intense ultrafast X rays. Phys. Rev. A 85, 023414 (2012).

  13. 13.

    , & Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys. Rev. A 83, 033402 (2011).

  14. 14.

    , & Multiwavelength anomalous diffraction at high X-ray intensity. Phys. Rev. Lett. 107, 218102 (2011).

  15. 15.

    , , & Impact of ultrafast electronic damage in single-particle X-ray imaging experiments. Phys. Rev. E 86, 051911 (2012).

  16. 16.

    & Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 1966).

  17. 17.

    Photon cross sections from 0.1 keV to 1 MeV for elements with Z = 1 to Z = 94. Atomic Data 5, 51–111 (1973).

  18. 18.

    Advanced Quantum Mechanics (Addison-Wesley, 1967).

  19. 19.

    , , & Above-threshold ionization in the X-ray regime. Phys. Rev. A 80, 053424 (2009).

  20. 20.

    & Multiple excitation and ionization of atoms by strong lasers. J. Opt. Soc. Am. B 4, 821–832 (1987).

  21. 21.

    Two-photon ionization of atomic hydrogen. Phys. Rev. 135, A51–A57 (1964).

  22. 22.

    , & Relativistic and retardation effects in the two-photon ionization of hydrogen-like ions. J. Phys. B 36, 873–878 (2003).

  23. 23.

    Theory of Multiphoton Processes (Plenum, 1987).

  24. 24.

    et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nature Photon. 6, 693–698 (2012).

  25. 25.

    Introduction to XAFS (Cambridge Univ. Press, 2010).

  26. 26.

    et al. Pulse energy measurement at the hard X-ray laser in Japan. Appl. Phys. Lett. 101, 023503 (2012).

  27. 27.

    et al. Beamline for X-ray free electron laser of SACLA. J. Phys. 425, 072006 (2013).

  28. 28.

    The Theory of Atomic Structure and Spectra (Univ. of California Press, 1981).

Download references

Acknowledgements

The authors thank H. Yoneda, T. Hara, T. Tanaka and T. Hatsui for helpful discussions. This work was supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (23360038 and 23226004). The experiments were performed with the approval of JASRI (proposal no. 2012B8006).

Author information

Affiliations

  1. RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

    • Kenji Tamasaku
    • , Yuichi Inubushi
    • , Kei Sawada
    • , Makina Yabashi
    •  & Tetsuya Ishikawa
  2. UVSOR facility, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji-cho, Okazaki-shi, Nagoya 444-8585, Japan

    • Eiji Shigemasa
  3. JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

    • Tetsuo Katayama
    • , Hirokatsu Yumoto
    •  & Haruhiko Ohashi
  4. Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

    • Hidekazu Mimura
  5. Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

    • Kazuto Yamauchi
  6. Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

    • Kazuto Yamauchi

Authors

  1. Search for Kenji Tamasaku in:

  2. Search for Eiji Shigemasa in:

  3. Search for Yuichi Inubushi in:

  4. Search for Tetsuo Katayama in:

  5. Search for Kei Sawada in:

  6. Search for Hirokatsu Yumoto in:

  7. Search for Haruhiko Ohashi in:

  8. Search for Hidekazu Mimura in:

  9. Search for Makina Yabashi in:

  10. Search for Kazuto Yamauchi in:

  11. Search for Tetsuya Ishikawa in:

Contributions

K.T., E.S. and Y.I. designed the experiment. H.Y., H.O., H.M. and K.Y. designed the focusing optics and the sample chamber. K.T., E.S., Y.I. and T.K. acquired the experimental data. K.T. and K.S. performed theoretical calculations. K.T. analysed data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Kenji Tamasaku.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.10

Further reading

  • Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    • O. Yu. Gorobtsov
    • , N. Mukharamova
    • , S. Lazarev
    • , M. Chollet
    • , D. Zhu
    • , Y. Feng
    • , R. P. Kurta
    • , J.-M. Meijer
    • , G. Williams
    • , M. Sikorski
    • , S. Song
    • , D. Dzhigaev
    • , S. Serkez
    • , A. Singer
    • , A. V. Petukhov
    •  & I. A. Vartanyants

    Scientific Reports (2018)

  • Establishing nonlinearity thresholds with ultraintense X-ray pulses

    • Jakub Szlachetko
    • , Joanna Hoszowska
    • , Jean-Claude Dousse
    • , Maarten Nachtegaal
    • , Wojciech Błachucki
    • , Yves Kayser
    • , Jacinto Sà
    • , Marc Messerschmidt
    • , Sebastien Boutet
    • , Garth J. Williams
    • , Christian David
    • , Grigory Smolentsev
    • , Jeroen A. van Bokhoven
    • , Bruce D. Patterson
    • , Thomas J. Penfold
    • , Gregor Knopp
    • , Marek Pajek
    • , Rafael Abela
    •  & Christopher J. Milne

    Scientific Reports (2016)

  • 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    • Tatiana Pikuz
    • , Anatoly Faenov
    • , Takeshi Matsuoka
    • , Satoshi Matsuyama
    • , Kazuto Yamauchi
    • , Norimasa Ozaki
    • , Bruno Albertazzi
    • , Yuichi Inubushi
    • , Makina Yabashi
    • , Kensuke Tono
    • , Yuya Sato
    • , Hirokatsu Yumoto
    • , Haruhiko Ohashi
    • , Sergei Pikuz
    • , Alexei N. Grum-Grzhimailo
    • , Masaharu Nishikino
    • , Tetsuya Kawachi
    • , Tetsuya Ishikawa
    •  & Ryosuke Kodama

    Scientific Reports (2016)

  • Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser

    • Hitoki Yoneda
    • , Yuichi Inubushi
    • , Kazunori Nagamine
    • , Yurina Michine
    • , Haruhiko Ohashi
    • , Hirokatsu Yumoto
    • , Kazuto Yamauchi
    • , Hidekazu Mimura
    • , Hikaru Kitamura
    • , Tetsuo Katayama
    • , Tetsuya Ishikawa
    •  & Makina Yabashi

    Nature (2015)

  • Anomalous nonlinear X-ray Compton scattering

    • Matthias Fuchs
    • , Mariano Trigo
    • , Jian Chen
    • , Shambhu Ghimire
    • , Sharon Shwartz
    • , Michael Kozina
    • , Mason Jiang
    • , Thomas Henighan
    • , Crystal Bray
    • , Georges Ndabashimiye
    • , Philip H. Bucksbaum
    • , Yiping Feng
    • , Sven Herrmann
    • , Gabriella A. Carini
    • , Jack Pines
    • , Philip Hart
    • , Christopher Kenney
    • , Serge Guillet
    • , Sébastien Boutet
    • , Garth J. Williams
    • , Marc Messerschmidt
    • , M. Marvin Seibert
    • , Stefan Moeller
    • , Jerome B. Hastings
    •  & David A. Reis

    Nature Physics (2015)