Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Space-division multiplexing in optical fibres

This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

Abstract

Optical communication technology has been advancing rapidly for several decades, supporting our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data-carrying capacity of a single optical fibre. To achieve this, researchers have explored and attempted to optimize multiplexing in time, wavelength, polarization and phase. Commercial systems now utilize all four dimensions to send more information through a single fibre than ever before. The spatial dimension has, however, remained untapped in single fibres, despite it being possible to manufacture fibres supporting hundreds of spatial modes or containing multiple cores, which could be exploited as parallel channels for independent signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The evolution of transmission capacity in optical fibres as evidenced by state-of-the-art laboratory transmission demonstrations.
Figure 2: Different approaches for realizing SDM.
Figure 3: The many components needed to fully exploit the advantages of high-density SDM.
Figure 4: 1.01 Pbit s−1 MCF WDM/SDM/PDM transmission experiment22.
Figure 5: 57.7 Tbit s−1 amplified WDM/MDM/PDM transmission experiment over a few-mode fibre34,102.

References

  1. 1

    Iano, S., Sato, T., Sentsui, S., Kuroha, T. & Nishimura, Y. in Proc. Opt. Fiber Commun. Conf. paper WB1 (OSA, 1979).

    Google Scholar 

  2. 2

    Berdagué, S. & Facq, P. Mode division multiplexing in optical fibers. App. Opt. 21, 1950–1955 (1982).

    ADS  Article  Google Scholar 

  3. 3

    Sillard, P. New fibers for ultra-high capacity transport. Opt. Fiber Technol. 17, 495–502 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Roberts, P. et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Wheeler, N. V. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.2 (OSA, 2012).

    Google Scholar 

  6. 6

    Bouwmans, G. et al. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm. Opt. Express 13, 8452–8459 (2005).

    ADS  Article  Google Scholar 

  7. 7

    Johnson, S. G. et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9, 748–779 (2001).

    ADS  Article  Google Scholar 

  8. 8

    Ramachandran, S. et al. High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber. Opt. Lett. 30, 3225–3227 (2005).

    ADS  Article  Google Scholar 

  9. 9

    Nicholson, J. W., Yablon, A. D., Ramachandran, S. & Ghalmi, S. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express 16, 7233–7243 (2008).

    ADS  Article  Google Scholar 

  10. 10

    DiGiovanni, D. J. & Stentz, A. J. Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices. US Patent 5,864,644 (1999).

  11. 11

    Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, 63–92 (2010).

    Article  Google Scholar 

  12. 12

    Leon-Saval, S. G., Birks, T. A., Bland-Hawthorn, J. & Englund, M. Multimode fiber devices with single-mode performance. Opt. Lett. 30, 2545–2547 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Reichenbach, K. L. & Xu, C. Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Express 15, 2151–2165 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Essiambre, R. J. & Tkach, R. W. Capacity trends and limits of optical communication networks. Proc. IEEE 100, 1035–1055 (2012).

    Article  Google Scholar 

  15. 15

    Mitra, P. P. & Stark, J. B. Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001).

    ADS  Article  Google Scholar 

  16. 16

    Winzer, P. J. Energy-efficient optical transport capacity scaling through spatial multiplexing. IEEE Photon. Tech. Lett. 23, 851–853 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Morioka, T. et al. Enhancing optical communications with brand new fibers. IEEE Com. Mag. 50, S31–S42 (2012).

    Article  Google Scholar 

  18. 18

    Koshiba, M., Saitoh, K. & Kokubun, Y. Heterogeneous multi-core fibers: proposal and design principles. IEICE Electron. Express 6, 98–103 (2009).

    Article  Google Scholar 

  19. 19

    Fini, J. M., Zhu, B., Taunay, T. F., Yan, M. F. & Abedin, K. S. Crosstalk in multicore fibers with randomness: gradual drift vs. short-length variations. Opt. Express, 20, 949–959 (2012).

    ADS  Article  Google Scholar 

  20. 20

    Winzer, P. J., Gnauck, A. H., Konczykowska, A., Jorge, F. & Dupuy, J. Y. in Proc. Euro. Conf. Opt. Commun. paper Tu.5.B.7 (IEEE, 2011).

    Google Scholar 

  21. 21

    Hayashi, T., Taru, T, Shimakawa, O., Sasaki, T. & Sasaoka, E. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19, 16576–16592 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Takara, H. et al. in Proc. Euro. Conf. Opt. Commun. paper Th3.C.1 (IEEE, 2012).

    Google Scholar 

  23. 23

    Sakaguchi, J. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5C (OSA, 2012).

    Google Scholar 

  24. 24

    Foschini, G. J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J. 1, 41–59 (1996).

    Article  Google Scholar 

  25. 25

    Savory, S. J. Digital coherent optical receivers: algorithms and subsystems. IEEE J. Sel. Top. Quant. Electron. 16, 1164–1179 (2010).

    ADS  Article  Google Scholar 

  26. 26

    Randel, S. et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Opt. Express 19, 16697–16707 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Inan, B. et al. DSP complexity of mode-division multiplexed receivers. Opt. Express 20, 10859–10869 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Bai, N. & Li, G. Adaptive frequency domain equalization for mode-division multiplexed transmission. IEEE Photon. Tech. Lett. 24, 1918–1921 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Bozinovic, N. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.6 (IEEE, 2012).

    Google Scholar 

  31. 31

    Gruner-Nielsen, L. et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss. IEEE J. Lightwave Tech. 30, 3693–3698 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Bai, N. et al. Mode-division multiplexed transmission with inline few mode fiber amplifier. Opt. Express 20, 2668–2680 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Sakamoto, T., Mori, T., Yamamoto, T. & Tomita S. in Proc. Opt. Fiber Commun. Conf. paper OM2D (OSA, 2012).

    Google Scholar 

  34. 34

    Sleiffer, V. A. J. M. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.4 (IEEE, 2012).

    Google Scholar 

  35. 35

    Randel, S. et al. in Proc. National Fiber Opt. Eng. Conf. paper PDP5C.5 (OSA, 2012).

    Google Scholar 

  36. 36

    Ryf, R. et al. in Proc. Frontiers in Optics paper FW6C.4. (OSA, 2012).

    Google Scholar 

  37. 37

    Koebele, C. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.3 (IEEE, 2011).

    Google Scholar 

  38. 38

    Ho, K. P. & Kahn, J. M. Statistics of group delays in multimode fiber with strong mode coupling. IEEE J. Lightwave Tech. 29, 3119–3128 (2011).

    ADS  Article  Google Scholar 

  39. 39

    Ho, K. P. & Kahn, J. M. Delay-spread distribution for multimode fiber with strong mode coupling. IEEE Photon. Tech. Lett. 24, 1906–1909 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Kahn, J. M. & Ho, K. P. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series paper TuC3.4 (IEEE, 2012).

    Google Scholar 

  41. 41

    Lobato, A. et al. Impact of mode coupling on the mode-dependent loss tolerance in few-mode fiber transmission. Opt. Express 20, 29776–29783 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  42. 42

    Koebele, C., Salsi, M., Charlet, G. & Bigo, S. Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber. IEEE Photon. Tech. Lett. 23, 1316–1318 (2011).

    ADS  Article  Google Scholar 

  43. 43

    Rademacher, G., Warm, S., Petermann, K. Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers. IEEE Photon. Tech. Lett. 24, 1929–1931 (2012).

    ADS  Article  Google Scholar 

  44. 44

    Mumtaz, S., Essiambre, R. J. & Agrawal, G. P. Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations. IEEE J. Lightwave Tech. 31, 398–406 (2013).

    ADS  Article  Google Scholar 

  45. 45

    Poletti, F. & Horak, P. Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B 25, 1645–1654 (2008).

    ADS  Article  Google Scholar 

  46. 46

    Essiambre, R. J. et al. Experimental investigation of inter-modal four-wave mixing in multimode fibers. IEEE Photon. Tech. Lett. 25, 539–542 (2013).

    ADS  Article  Google Scholar 

  47. 47

    Petrovich, M. N. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.A.5 (IEEE, 2012).

    Google Scholar 

  48. 48

    MacSuibhne, N. et al. in Proc. Euro. Conf. Opt. Commun. Th.3.A.3 (IEEE, 2012).

    Google Scholar 

  49. 49

    Ryf, R. et al. MIMO-based crosstalk suppression in spatially multiplexed 3 × 56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber. IEEE Photon. Tech. Lett. 23, 1469–1471 (2011).

    ADS  Article  Google Scholar 

  50. 50

    Ryf, R. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.1 (IEEE, 2011).

    Google Scholar 

  51. 51

    Mumtaz, S., Essiambre, R. J. & Agrawal, G. P. Reduction of nonlinear penalties due to linear coupling in multicore optical fibers. IEEE Photon. Tech. Lett. 24, 1574–1576 (2012).

    ADS  Article  Google Scholar 

  52. 52

    Bulow, H., Al-Hashimi, H. & Schmauss, B. in Proc. Opto-Electron. Commun. Conf. 562–563 (IEEE, 2012).

    Google Scholar 

  53. 53

    Fontaine, N. K., Ryf, R., Leon-Saval, S. G. & Bland-Hawthorn, J. in Proc. Euro. Conf. Opt. Commun. paper Th.2.D (IEEE, 2012).

    Google Scholar 

  54. 54

    Ryf, R., Fontaine, N. K. & Essiambre, R. J. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  55. 55

    Carpenter, J. & Wilkinson, T. D. All optical mode-multiplexing using holography and multimode fiber couplers. IEEE J. Lightwave Tech. 30, 1978–1984 (2012).

    ADS  Article  Google Scholar 

  56. 56

    Sperti, D. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.12.B.2 (IEEE, 2011).

    Google Scholar 

  57. 57

    Krummrich, P. M. Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing. Opt. Express 19, 16636–16652 (2011).

    ADS  Article  Google Scholar 

  58. 58

    Jung, Y. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.K.4 (IEEE, 2011).

    Google Scholar 

  59. 59

    Le Cocq, G. et al. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing. Opt. Express 20, 27051–27061 (2012).

    ADS  Article  Google Scholar 

  60. 60

    Feuer, M. D. et al. Joint digital signal processing receivers for spatial superchannels. IEEE Photon. Tech. Lett. 24, 1957–1959 (2012).

    ADS  Article  Google Scholar 

  61. 61

    Chen, X., Li, A., Ye, J., Al Amin, A. & Shieh, W. Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer. Opt. Express 20, 14302–14307 (2012).

    ADS  Article  Google Scholar 

  62. 62

    Cvijetic, M., Djordjevic, I. B. & Cvijetic, N. Dynamic multidimensional optical networking based on spatial and spectral processing. Opt. Express 20, 9144–9150 (2012).

    ADS  Article  Google Scholar 

  63. 63

    Guan, K., Winzer, P. & Soljanin, E. in Proc. Euro. Conf. Opt. Commun. paper Tu.3.C.4 (IEEE, 2012).

    Google Scholar 

  64. 64

    Klaus, W. et al. Free-space coupling optics for multi-core fibers. IEEE Photon. Tech. Lett. 24, 1902–1905 (2012).

    ADS  Article  Google Scholar 

  65. 65

    Zhu, B. et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19, 16665–16671 (2011).

    ADS  Article  Google Scholar 

  66. 66

    Tottori, Y., Kobayashi, T. & Watanabe, M. Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photon. Tech. Lett. 24, 1926–1928 (2012).

    ADS  Article  Google Scholar 

  67. 67

    Watanabe, K., Saito, T., Imamura, K. & Shiino, M. in Proc. Opto-Electron. Commun. Conf. (IEEE, 2012).

    Google Scholar 

  68. 68

    Louchet, H. et al. in Proc. Euro. Conf. Opt. Commun. paper We.10.P1.74 (IEEE, 2011).

    Google Scholar 

  69. 69

    Abedin, K. S. et al. Cladding-pumped erbium-doped multicore fiber amplifier. Opt. Express 20, 20191–20200 (2012).

    ADS  Article  Google Scholar 

  70. 70

    Mimura, Y. et al. in Proc. Euro. Conf. Opt. Commun. paper Tu.4.F (IEEE, 2012).

    Google Scholar 

  71. 71

    Lee, B. G. et al. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2010).

    Google Scholar 

  72. 72

    Lee, B. G. et al. End-to-end multicore multimode fiber optic link operating up to 120 Gb/s. IEEE J. Lightwave Tech. 30, 886–892 (2012).

    ADS  Article  Google Scholar 

  73. 73

    Doerr, C. R. & Taunay, T. F. Silicon photonics core-, wavelength-, and polarization-diversity receiver. IEEE Photon. Tech. Lett. 23, 597–599 (2011).

    ADS  Article  Google Scholar 

  74. 74

    Pinguet, T. et al. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  75. 75

    Su, T. et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt. Express 20, 9396–9402 (2012).

    ADS  Article  Google Scholar 

  76. 76

    Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    ADS  Article  Google Scholar 

  77. 77

    Koonen, A. M. J., Chen, H. S., van den Boom, H. P. A. & Raz, O. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  78. 78

    Suzuki, K., Ono, H., Mizuno, T., Hashizume, Y. & Takahashi, T. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

    Google Scholar 

  79. 79

    Le Noane, G., Boscher, D., Grosso, P., Bizeul, J. C. & Botton, C. in Proc. Int. Wire Cable Symp. 203–209 (IWCS, 1994).

    Google Scholar 

  80. 80

    Rosinski, B., Chi, J. W., Grosso, P. & Bihan, J. L. Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers. IEEE J. Lightwave Tech. 17, 807–810 (1999).

    ADS  Article  Google Scholar 

  81. 81

    Zhu, B. et al. Seven-core multicore fiber transmissions for passive optical network. Opt. Express 18, 11117–11122 (2010).

    ADS  Article  Google Scholar 

  82. 82

    Zhu, B. et al. 70-Gb/s multicore multimode fiber transmissions for optical data links. IEEE Photon. Tech. Lett. 22, 1647–1649 (2010).

    Google Scholar 

  83. 83

    Zhu, B. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB7 (OSA, 2011).

    Google Scholar 

  84. 84

    Sakaguchi, J. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB6 (OSA, 2011).

    Google Scholar 

  85. 85

    Zhu, B. et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19, 16665–16671 (2011).

    ADS  Article  Google Scholar 

  86. 86

    Chandrasekhar, S. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.4. (IEEE, 2011).

    Google Scholar 

  87. 87

    Liu, X. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.B.1 (IEEE, 2011).

    Google Scholar 

  88. 88

    Gnauck, A. H. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.2.C.2 (IEEE, 2012).

    Google Scholar 

  89. 89

    Takahashi, H. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.3 (IEEE, 2012).

    Google Scholar 

  90. 90

    Stuart, H. R. Dispersive multiplexing in multimode optical fiber. Science 289, 281–283 (2000).

    ADS  Article  Google Scholar 

  91. 91

    Shah, A. R. et al. Coherent optical MIMO (COMIMO). IEEE J. Lightwave Tech. 23, 2410–2419 (2005).

    ADS  Article  Google Scholar 

  92. 92

    Thomsen, B. C. in Proc. Opt. Fiber Commun. Conf. paper OThM6 (OSA, 2012).

    Google Scholar 

  93. 93

    Franz, B., Suikat, D., Dischler, R., Buchali, F. & Buelow, H. in Proc. Euro. Conf. Opt. Commun. paper Tu3C4 (IEEE, 2010).

    Google Scholar 

  94. 94

    Winzer, P. J. & Foschini, G. J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Opt. Express 19, 16680–16696 (2011).

    ADS  Article  Google Scholar 

  95. 95

    Li, A., Al Amin, A., Chen, X. & Shieh, W. in Proc. Opt. Fiber Commun. Conf. paper PDPB8 (OSA, 2011).

    Google Scholar 

  96. 96

    Salsi, M. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB9 (OSA, 2011).

    Google Scholar 

  97. 97

    Ryf, R. et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB10 (OSA, 2011).

    Google Scholar 

  98. 98

    Ryf, R. et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing. IEEE J. Lightwave Tech. 30, 521–531 (2012).

    ADS  Article  Google Scholar 

  99. 99

    Ip, E. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.2 (IEEE, 2011).

    Google Scholar 

  100. 100

    Ip, E. et al. in Proc. Opt. Fiber Commun. Conf. paper OTu2C.4 (OSA, 2012).

    Google Scholar 

  101. 101

    Ryf, R. et al. Combined wavelength- and mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span. IEEE Photon. Tech. Lett. 24, 1965–1968 (2012).

    ADS  Article  Google Scholar 

  102. 102

    Sleiffer, V. A. J. M. et al. 73.7 Tb/s (96×3×256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. Opt. Express 20, B428–B438 (2012).

    Article  Google Scholar 

  103. 103

    Randel, S. et al. in Proc. Euro. Conf. Opt. Commun. paper Tu.5.B.1 (IEEE, 2011).

    Google Scholar 

  104. 104

    Ryf, R. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5C.2 (OSA, 2012).

    Google Scholar 

  105. 105

    Xia, C. et al. Hole-assisted few-mode multicore fiber for high-density space-division multiplexing. IEEE Photon. Tech. Lett. 24, 1914–1916 (2012).

    ADS  Article  Google Scholar 

  106. 106

    Takenaga, K. et al. in Proc. IEEE Summer Topical Meeting on SDM paper TuC1.2 (IEEE, 2012).

    Google Scholar 

  107. 107

    Qian, D. et al. in Proc. Frontiers in Optics paper FW6C.3 (OSA, 2012).

    Google Scholar 

  108. 108

    Amaya, N. et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.D.3 (IEEE, 2012).

    Google Scholar 

  109. 109

    Feuer, M. D. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5B.8 (OSA, 2013).

    Google Scholar 

  110. 110

    Jung, Y. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.3 (OSA, 2013).

    Google Scholar 

  111. 111

    Ryf, R. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.1 (OSA, 2013).

    Google Scholar 

  112. 112

    Ip, E. et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.2 (OSA, 2013).

    Google Scholar 

Download references

Acknowledgements

D.J.R. thanks his colleagues and collaborators on the European Union Framework 7 funded MODEGAP project (258033) and the UK Engineering and Physical Sciences Research Council (EPSRC) funded Hyperhighway project (EP/I01196X/1) for discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. J. Richardson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richardson, D., Fini, J. & Nelson, L. Space-division multiplexing in optical fibres. Nature Photon 7, 354–362 (2013). https://doi.org/10.1038/nphoton.2013.94

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing