Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum control of a spin qubit coupled to a photonic crystal cavity

Abstract

A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of light to solid-state qubits. Quantum dots can be integrated into a photonic crystal, with optical transitions coupling to photons and spin states forming a long-lived quantum memory. Many researchers have now succeeded in coupling these emitters to photonic crystal cavities, but there have been no demonstrations of a functional spin qubit and quantum gates in this environment. Here, we have developed a coupled cavity–quantum dot system in which the dot is controllably charged with a single electron. We perform the initialization, rotation and measurement of a single electron spin qubit using laser pulses, and find that the cavity can significantly improve these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Charged quantum dots in a cavity.
Figure 2: Resonant laser spectroscopy.
Figure 3: Spin initialization and measurement in QD-C2.
Figure 4: Coherent spin rotation.

Similar content being viewed by others

References

  1. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  2. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  ADS  Google Scholar 

  3. Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).

    Article  ADS  Google Scholar 

  4. Englund, D., Faraon, A., Zhang, B. Y., Yamamoto, Y. & Vuckovic, J. Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15, 5550–5558 (2007).

    Article  ADS  Google Scholar 

  5. Bose, R., Sridharan, D., Kim, H., Solomon, G. S. & Waks, E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012).

    Article  ADS  Google Scholar 

  6. Francardi, M. et al. Enhanced spontaneous emission in a photonic-crystal light-emitting diode. Appl. Phys. Lett. 93, 143102 (2008).

    Article  ADS  Google Scholar 

  7. Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

    Article  ADS  Google Scholar 

  8. Englund, D. et al. An optical modulator based on a single strongly coupled quantum dot–cavity system in a p-i-n junction. Opt. Express 17, 18651–18658 (2009).

    Article  ADS  Google Scholar 

  9. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  10. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  ADS  Google Scholar 

  11. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  12. Wolters, J. et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010).

    Article  ADS  Google Scholar 

  13. Faraon, A., Santori, C., Huang, Z., Acosta, V. & Beausoleil, R. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

    Article  ADS  Google Scholar 

  14. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  ADS  Google Scholar 

  15. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  16. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  17. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–201 (2012).

    Article  ADS  Google Scholar 

  18. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  19. Liu, R. B., Yao, W. & Sham, L. J. Quantum computing by optical control of electron spins. Adv. Phys. 59, 703–802 (2010).

    Article  ADS  Google Scholar 

  20. Pinotsi, D., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quant. Electron. 47, 1371–1374 (2011).

    Article  ADS  Google Scholar 

  21. Alen, B., Bickel, F., Karrai, K., Warburton, R. & Petroff, P. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83, 2235–2237 (2003).

    Article  ADS  Google Scholar 

  22. Alen, B. et al. Absorptive and dispersive optical responses of excitons in a single quantum dot. Appl. Phys. Lett. 89, 123124 (2006).

    Article  ADS  Google Scholar 

  23. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    Article  ADS  Google Scholar 

  24. Atature, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  25. Xu, X. et al. Fast spin state initialization in a singly charged InAs–GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    Article  ADS  Google Scholar 

  26. Kim, D. et al. Optical spin initialization and nondestructive measurement in a quantum dot molecule. Phys. Rev. Lett. 101, 236804 (2008).

    Article  ADS  Google Scholar 

  27. Koudinov, A., Akimov, I., Kusrayev, Y. & Henneberger, F. Optical and magnetic anisotropies of the hole states in Stranski–Krastanov quantum dots. Phys. Rev. B 70, 241305(R) (2004).

    Article  ADS  Google Scholar 

  28. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

  29. Vamivakas, A. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

    Article  ADS  Google Scholar 

  30. Economou, S. E. & Reinecke, T. L. Theory of fast optical spin rotation in a quantum dot based on geometric phases and trapped states. Phys. Rev. Lett. 99, 217401 (2007).

    Article  ADS  Google Scholar 

  31. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  32. Press, D., Ladd, T. D., Zhang, B. Y. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  33. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nature Phys. 5, 262–266 (2009).

    Article  ADS  Google Scholar 

  34. Kim, E. D. et al. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. Phys. Rev. Lett. 104, 167401 (2010).

    Article  ADS  Google Scholar 

  35. Kim, D., Carter, S. G., Greilich, A., Bracker, A. S. & Gammon, D. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2011).

    Article  ADS  Google Scholar 

  36. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 703–709 (2011).

    Article  ADS  Google Scholar 

  37. Godden, T. M. et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).

    Article  ADS  Google Scholar 

  38. Ladd, T. D. et al. Pulsed nuclear pumping and spin diffusion in a single charged quantum dot. Phys. Rev. Lett. 105, 107401 (2010).

    Article  ADS  Google Scholar 

  39. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  40. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    Article  ADS  Google Scholar 

  41. Sun, B. et al. Persistent narrowing of nuclear-spin fluctuations in InAs quantum dots using laser excitation. Phys. Rev. Lett. 108, 187401 (2012).

    Article  ADS  Google Scholar 

  42. Solenov, D., Economou, S. E. & Reinecke, T. L. Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity. Phys. Rev. B 87, 035308 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Multi-University Research Initiative (US Army Research Office; W911NF0910406), the NSA/LPS, and the US Office of Naval Research. The authors thank A. Greilich for contributions during the preliminary stage of this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in preparing the manuscript. S.G.C., T.M.S., A.S.B. and D.G. conceived and designed the experiments and samples. A.S.B. grew the quantum dot samples. M.K., C.S.K. and A.S.B. processed photonic crystals and gates in the samples. T.M.S., S.G.C. and L.Y. optically characterized the cavities and quantum dots. S.G.C. performed the differential reflectivity and laser control experiments. D.S., S.E.E., T.L.R. and T.M.S. provided theoretical insight and calculations.

Corresponding author

Correspondence to Daniel Gammon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 796 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, S., Sweeney, T., Kim, M. et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photon 7, 329–334 (2013). https://doi.org/10.1038/nphoton.2013.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing